IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v287y2020i2p452-459.html
   My bibliography  Save this article

A branch-and-cut algorithm for the restricted Block Relocation Problem

Author

Listed:
  • Bacci, Tiziano
  • Mattia, Sara
  • Ventura, Paolo

Abstract

We consider the Block Relocation Problem, that has a crucial role in the logistics of containers. It consists of minimizing the number of container relocations within a container bay/yard. Since the number of containers shipped worldwide grew dramatically in the last years, the problem has been widely investigated. Here we propose an exact algorithm for the restricted version of the Block Relocation Problem, based on a new integer linear programming formulation. We compare such new approach with the state-of-art exact methods. The computational results prove its effectiveness and show that it outperforms all the previously proposed procedures, in almost all the considered instances.

Suggested Citation

  • Bacci, Tiziano & Mattia, Sara & Ventura, Paolo, 2020. "A branch-and-cut algorithm for the restricted Block Relocation Problem," European Journal of Operational Research, Elsevier, vol. 287(2), pages 452-459.
  • Handle: RePEc:eee:ejores:v:287:y:2020:i:2:p:452-459
    DOI: 10.1016/j.ejor.2020.05.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720304756
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yat‐wah Wan & Jiyin Liu & Pei‐Chun Tsai, 2009. "The assignment of storage locations to containers for a container stack," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(8), pages 699-713, December.
    2. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "A new binary formulation of the restricted Container Relocation Problem based on a binary encoding of configurations," European Journal of Operational Research, Elsevier, vol. 267(2), pages 467-477.
    3. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    4. Caserta, Marco & Schwarze, Silvia & Voß, Stefan, 2012. "A mathematical formulation and complexity considerations for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 219(1), pages 96-104.
    5. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.
    6. de Melo da Silva, Marcos & Toulouse, Sophie & Wolfler Calvo, Roberto, 2018. "A new effective unified model for solving the Pre-marshalling and Block Relocation Problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 40-56.
    7. Zehendner, Elisabeth & Caserta, Marco & Feillet, Dominique & Schwarze, Silvia & Voß, Stefan, 2015. "An improved mathematical formulation for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 245(2), pages 415-422.
    8. Lixin Tang & Wei Jiang & Jiyin Liu & Yun Dong, 2015. "Research into container reshuffling and stacking problems in container terminal yards," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 751-766, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    2. Jiménez-Piqueras, Celia & Ruiz, Rubén & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon, 2023. "A constraint programming approach for the premarshalling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 668-678.
    3. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    4. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
    5. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Xie, Ying, 2022. "Service fairness and value of customer information for the stochastic container relocation problem under flexible service policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    6. Tanaka, Shunji & Voß, Stefan, 2022. "An exact approach to the restricted block relocation problem based on a new integer programming formulation," European Journal of Operational Research, Elsevier, vol. 296(2), pages 485-503.
    7. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    2. Tanaka, Shunji & Voß, Stefan, 2019. "An exact algorithm for the block relocation problem with a stowage plan," European Journal of Operational Research, Elsevier, vol. 279(3), pages 767-781.
    3. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    4. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    5. Tanaka, Shunji & Voß, Stefan, 2022. "An exact approach to the restricted block relocation problem based on a new integer programming formulation," European Journal of Operational Research, Elsevier, vol. 296(2), pages 485-503.
    6. Boschma, René & Mes, Martijn R.K. & de Vries, Leon R., 2023. "Approximate dynamic programming for container stacking," European Journal of Operational Research, Elsevier, vol. 310(1), pages 328-342.
    7. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.
    8. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "Yard Crane Scheduling for container storage, retrieval, and relocation," European Journal of Operational Research, Elsevier, vol. 271(1), pages 288-316.
    9. Huiling Zhu & Mingjun Ji & Wenwen Guo & Qingbin Wang & Yongzhi Yang, 2019. "Mathematical formulation and heuristic algorithm for the block relocation and loading problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 333-351, June.
    10. Boge, Sven & Goerigk, Marc & Knust, Sigrid, 2020. "Robust optimization for premarshalling with uncertain priority classes," European Journal of Operational Research, Elsevier, vol. 287(1), pages 191-210.
    11. Andresson Silva Firmino & Ricardo Martins Abreu Silva & Valéria Cesário Times, 2019. "A reactive GRASP metaheuristic for the container retrieval problem to reduce crane’s working time," Journal of Heuristics, Springer, vol. 25(2), pages 141-173, April.
    12. Raka Jovanovic & Shunji Tanaka & Tatsushi Nishi & Stefan Voß, 2019. "A GRASP approach for solving the Blocks Relocation Problem with Stowage Plan," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 702-729, September.
    13. de Melo da Silva, Marcos & Toulouse, Sophie & Wolfler Calvo, Roberto, 2018. "A new effective unified model for solving the Pre-marshalling and Block Relocation Problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 40-56.
    14. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Xie, Ying, 2022. "Service fairness and value of customer information for the stochastic container relocation problem under flexible service policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    15. Zweers, Bernard G. & Bhulai, Sandjai & van der Mei, Rob D., 2020. "Optimizing pre-processing and relocation moves in the Stochastic Container Relocation Problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 954-971.
    16. Zhang, Canrong & Guan, Hao & Yuan, Yifei & Chen, Weiwei & Wu, Tao, 2020. "Machine learning-driven algorithms for the container relocation problem," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 102-131.
    17. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    18. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén & Tierney, Kevin, 2020. "Minimizing crane times in pre-marshalling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    19. Ting, Ching-Jung & Wu, Kun-Chih, 2017. "Optimizing container relocation operations at container yards with beam search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 17-31.
    20. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "A new binary formulation of the restricted Container Relocation Problem based on a binary encoding of configurations," European Journal of Operational Research, Elsevier, vol. 267(2), pages 467-477.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:287:y:2020:i:2:p:452-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.