IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v285y2020i2p484-496.html
   My bibliography  Save this article

A self-tuning variable neighborhood search algorithm and an effective decoding scheme for open shop scheduling problems with travel/setup times

Author

Listed:
  • Mejía, Gonzalo
  • Yuraszeck, Francisco

Abstract

In this paper, we study Open Shop Scheduling Problems (OSSPs) that involve (1) travel times between machines and/or (2) sequence-dependent setup times. First, we propose a new decoding scheme on the well-known permutation list representation and study its properties. Second, we describe an effective Variable Neighborhood Search (VNS) algorithm which incorporates the proposed decoding scheme and that uses a self-tuning routine to set its most important parameter. Last, we tested the performance of the algorithm on several sets of instances: the first two sets consisted of classical instances of OSSPs extended with randomly generated both travel times and anticipatory sequence-dependent setup times. The third set of problems were instances of OSSPs with travel times previously presented in the literature. The last set of problems consisted of classical OSSP of the literature and was used mainly to corroborate our results. The solutions of the proposed VNS were compared with the solutions of constraint programming (CP) algorithms, previous solutions and with the optimal solutions where available. The results revealed three important things: First, the decoding strategy was the factor that had the greatest influence on the performance of the VNS algorithm. Second, the proposed self-tuning VNS algorithm was robust and very easy to adapt to a variety of OSSPs. Third, the algorithm exhibited consistent and very competitive performance in terms of computer time and solution quality in all sets of instances.

Suggested Citation

  • Mejía, Gonzalo & Yuraszeck, Francisco, 2020. "A self-tuning variable neighborhood search algorithm and an effective decoding scheme for open shop scheduling problems with travel/setup times," European Journal of Operational Research, Elsevier, vol. 285(2), pages 484-496.
  • Handle: RePEc:eee:ejores:v:285:y:2020:i:2:p:484-496
    DOI: 10.1016/j.ejor.2020.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720301284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    2. Bräsel, Heidemarie & Herms, André & Mörig, Marc & Tautenhahn, Thomas & Tusch, Jan & Werner, Frank, 2008. "Heuristic constructive algorithms for open shop scheduling to minimize mean flow time," European Journal of Operational Research, Elsevier, vol. 189(3), pages 856-870, September.
    3. Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.
    4. Pengfei Zhang & Jonathan F. Bard & Douglas J. Morrice & Karl M. Koenig, 2019. "Extended open shop scheduling with resource constraints: Appointment scheduling for integrated practice units," IISE Transactions, Taylor & Francis Journals, vol. 51(10), pages 1037-1060, October.
    5. Fariborz Jolai & Seyed Morteza Goldansaz & Amir Hossein Zahedi-Anaraki, 2013. "Simulated annealing and imperialist competitive algorithm for minimising makespan in an open shop," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 17(3), pages 275-294.
    6. Gueret, Christelle & Jussien, Narendra & Prins, Christian, 2000. "Using intelligent backtracking to improve branch-and-bound methods: An application to Open-Shop problems," European Journal of Operational Research, Elsevier, vol. 127(2), pages 344-354, December.
    7. Christian Prins, 2000. "Competitive genetic algorithms for the open-shop scheduling problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(3), pages 389-411, December.
    8. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    9. Guillermo Campos Ciro & Frédéric Dugardin & Farouk Yalaoui & Russell Kelly, 2016. "Open shop scheduling problem with a multi-skills resource constraint: a genetic algorithm and an ant colony optimisation approach," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4854-4881, August.
    10. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    11. Lin, Hung-Tso & Lee, Hong-Tau & Pan, Wen-Jung, 2008. "Heuristics for scheduling in a no-wait open shop with movable dedicated machines," International Journal of Production Economics, Elsevier, vol. 111(2), pages 368-377, February.
    12. Nizar El Hachemi & Michel Gendreau & Louis-Martin Rousseau, 2011. "A hybrid constraint programming approach to the log-truck scheduling problem," Annals of Operations Research, Springer, vol. 184(1), pages 163-178, April.
    13. David Alcaide & Joaquín Sicilia & Daniele Vigo, 1997. "A tabu search algorithm for the Open Shop problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(2), pages 283-296, December.
    14. Goncalves, Jose Fernando & de Magalhaes Mendes, Jorge Jose & Resende, Mauricio G. C., 2005. "A hybrid genetic algorithm for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 167(1), pages 77-95, November.
    15. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    16. Peter Brucker & Sigrid Knust & T.C. Cheng & Natalia Shakhlevich, 2004. "Complexity Results for Flow-Shop and Open-Shop Scheduling Problems with Transportation Delays," Annals of Operations Research, Springer, vol. 129(1), pages 81-106, July.
    17. Wirth, Martin & Emde, Simon, 2018. "Scheduling trucks on factory premises," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 107252, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Averbakh, Igor & Berman, Oded & Chernykh, Ilya, 2005. "A -approximation algorithm for the two-machine routing open-shop problem on a two-node network," European Journal of Operational Research, Elsevier, vol. 166(1), pages 3-24, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    2. Ahmadian, Mohammad Mahdi & Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2021. "Four decades of research on the open-shop scheduling problem to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 295(2), pages 399-426.
    3. Yin, Jiateng & D’Ariano, Andrea & Wang, Yihui & Yang, Lixing & Tang, Tao, 2021. "Timetable coordination in a rail transit network with time-dependent passenger demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 183-202.
    4. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    5. Hellsten, Erik Orm & Sacramento, David & Pisinger, David, 2020. "An adaptive large neighbourhood search heuristic for routing and scheduling feeder vessels in multi-terminal ports," European Journal of Operational Research, Elsevier, vol. 287(2), pages 682-698.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadian, Mohammad Mahdi & Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2021. "Four decades of research on the open-shop scheduling problem to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 295(2), pages 399-426.
    2. Shahaboddin Shamshirband & Mohammad Shojafar & A. Hosseinabadi & Maryam Kardgar & M. Nasir & Rodina Ahmad, 2015. "OSGA: genetic-based open-shop scheduling with consideration of machine maintenance in small and medium enterprises," Annals of Operations Research, Springer, vol. 229(1), pages 743-758, June.
    3. Guillermo Campos Ciro & Frédéric Dugardin & Farouk Yalaoui & Russell Kelly, 2016. "Open shop scheduling problem with a multi-skills resource constraint: a genetic algorithm and an ant colony optimisation approach," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4854-4881, August.
    4. Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.
    5. Selcuk Colak & Anurag Agarwal, 2005. "Non‐greedy heuristics and augmented neural networks for the open‐shop scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 631-644, October.
    6. Pempera, Jaroslaw & Smutnicki, Czeslaw, 2018. "Open shop cyclic scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 773-781.
    7. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    8. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    9. Arnaud Malapert & Hadrien Cambazard & Christelle Guéret & Narendra Jussien & André Langevin & Louis-Martin Rousseau, 2012. "An Optimal Constraint Programming Approach to the Open-Shop Problem," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 228-244, May.
    10. Ansis Ozolins, 2021. "Dynamic programming approach for solving the open shop problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 291-306, March.
    11. Tamer Abdelmaguid & Mohamed Shalaby & Mohamed Awwad, 2014. "A tabu search approach for proportionate multiprocessor open shop scheduling," Computational Optimization and Applications, Springer, vol. 58(1), pages 187-203, May.
    12. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    13. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    14. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    15. Antonina P. Khramova & Ilya Chernykh, 2021. "A new algorithm for the two-machine open shop and the polynomial solvability of a scheduling problem with routing," Journal of Scheduling, Springer, vol. 24(4), pages 405-412, August.
    16. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    17. Zeynep Adak & Mahmure Övül Arıoğlu Akan & Serol Bulkan, 0. "Multiprocessor open shop problem: literature review and future directions," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    18. Lizhong Zhao & Chen-Fu Chien & Mitsuo Gen, 2018. "A bi-objective genetic algorithm for intelligent rehabilitation scheduling considering therapy precedence constraints," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 973-988, June.
    19. Sioud, A. & Gagné, C., 2018. "Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 264(1), pages 66-73.
    20. Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:285:y:2020:i:2:p:484-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.