IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v282y2020i3p926-935.html
   My bibliography  Save this article

Handling negative data in slacks-based measure data envelopment analysis models

Author

Listed:
  • Tone, Kaoru
  • Chang, Tsung-Sheng
  • Wu, Chen-Hui

Abstract

This paper proposes slacks-based measure (SBM) data envelopment analysis (DEA) models that handle negative data. Unlike existing negative data allowable DEA models, the proposed SBM DEA models are consistent with ordinary SBM models and units invariant, they handle various types of returns to scale, and they avoid division by zero. These new SBM DEA models transform original negative inputs and outputs into positive counterparts based on a newly defined “base point”. Hence, these models are referred to as the BP-SBM DEA models. In addition to the basic BP-SBM DEA models, this research further develops data-oriented and application-oriented BP-SBM DEA-type models for different application problems involving negative data. Numerical examples are provided to illustrate various aspects and implementation details of these models.

Suggested Citation

  • Tone, Kaoru & Chang, Tsung-Sheng & Wu, Chen-Hui, 2020. "Handling negative data in slacks-based measure data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 926-935.
  • Handle: RePEc:eee:ejores:v:282:y:2020:i:3:p:926-935
    DOI: 10.1016/j.ejor.2019.09.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719308124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.09.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M C A Silva Portela & E Thanassoulis & G Simpson, 2004. "Negative data in DEA: a directional distance approach applied to bank branches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1111-1121, October.
    2. Jesus T. Pastor & Juan Aparicio, 2015. "Translation Invariance in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 8, pages 245-268, Springer.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Ando, Kazutoshi & Minamide, Masato & Sekitani, Kazuyuki & Shi, Jianming, 2017. "Monotonicity of minimum distance inefficiency measures for Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 260(1), pages 232-243.
    5. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    6. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    7. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    8. Cheng, Gang & Zervopoulos, Panagiotis & Qian, Zhenhua, 2013. "A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 225(1), pages 100-105.
    9. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    10. Ruiyue Lin & Zhiping Chen, 2017. "A directional distance based super-efficiency DEA model handling negative data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1312-1322, November.
    11. J A Sharp & W Meng & W Liu, 2007. "A modified slacks-based measure model for data envelopment analysis with ‘natural’ negative outputs and inputs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1672-1677, December.
    12. Fukuyama, Hirofumi & Maeda, Yasunobu & Sekitani, Kazuyuki & Shi, Jianming, 2014. "Input–output substitutability and strongly monotonic p-norm least distance DEA measures," European Journal of Operational Research, Elsevier, vol. 237(3), pages 997-1007.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Hsuan-Shih, 2022. "Integrating SBM model and Super-SBM model: a one-model approach," Omega, Elsevier, vol. 113(C).
    2. Chang, Tsung-Sheng & Tone, Kaoru & Wu, Chen-Hui, 2021. "Nested dynamic network data envelopment analysis models with infinitely many decision making units for portfolio evaluation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 766-781.
    3. Cui, Qiang & Jia, Zi-ke, 2023. "Measuring the dynamic airline energy efficiency with non-homogeneous structures," Energy, Elsevier, vol. 266(C).
    4. Andrey V. Lychev & Svetlana V. Ratner & Vladimir E. Krivonozhko, 2023. "Two-Stage Data Envelopment Analysis Models with Negative System Outputs for the Efficiency Evaluation of Government Financial Policies," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
    5. Adjei Peter Darko & Decui Liang & Yinrunjie Zhang & Agbodah Kobina, 2023. "Service quality in football tourism: an evaluation model based on online reviews and data envelopment analysis with linguistic distribution assessments," Annals of Operations Research, Springer, vol. 325(1), pages 185-218, June.
    6. Dianshuang Wang & Hongyun Huang & Xin Zhao & Fang Fang, 2023. "Green technological progress, agricultural modernization, and wage inequality: Lessons from China," Review of Development Economics, Wiley Blackwell, vol. 27(3), pages 1673-1698, August.
    7. Danijela Tuljak-Suban & Patricija Bajec, 2022. "A Hybrid DEA Approach for the Upgrade of an Existing Bike-Sharing System with Electric Bikes," Energies, MDPI, vol. 15(21), pages 1-23, October.
    8. Omrani, Hashem & Emrouznejad, Ali & Shamsi, Meisam & Fahimi, Pegah, 2022. "Evaluation of insurance companies considering uncertainty: A multi-objective network data envelopment analysis model with negative data and undesirable outputs," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    9. Halická, Margaréta & Trnovská, Mária & Černý, Aleš, 2024. "A unified approach to radial, hyperbolic, and directional efficiency measurement in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 312(1), pages 298-314.
    10. Patricija Bajec & Danijela Tuljak-Suban & Eva Zalokar, 2021. "A Distance-Based AHP-DEA Super-Efficiency Approach for Selecting an Electric Bike Sharing System Provider: One Step Closer to Sustainability and a Win–Win Effect for All Target Groups," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    11. Toloo, Mehdi & Tone, Kaoru & Izadikhah, Mohammad, 2023. "Selecting slacks-based data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1302-1318.
    12. Tone, Kaoru & Toloo, Mehdi & Izadikhah, Mohammad, 2020. "A modified slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 287(2), pages 560-571.
    13. Lin, Shuguang & Shi, Hai-Liu & Wang, Ying-Ming, 2022. "An integrated slacks-based super-efficiency measure in the presence of nonpositive data," Omega, Elsevier, vol. 111(C).
    14. Zohreh Sadeghi & Reza Farzipoor Saen & Mahdi Moradzadehfard, 2022. "RETRACTED ARTICLE: Developing a network data envelopment analysis model for appraising sustainable supply chains: a sustainability accounting approach," Operations Management Research, Springer, vol. 15(3), pages 809-824, December.
    15. Mehdi Soltanifar & Hamid Sharafi, 2022. "A modified DEA cross efficiency method with negative data and its application in supplier selection," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 265-296, January.
    16. Kekui Chen & Jianming Fu & Yun Gong & Jian Wang & Shilin Lv & Yajie Liu & Jingyun Li, 2022. "Study on the Influencing Factors of CO 2 from the Perspective of CO 2 Mitigation Potentials," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    17. Lee, Hsuan-Shih, 2021. "Slacks-based measures of efficiency and super-efficiency in presence of nonpositive data," Omega, Elsevier, vol. 103(C).
    18. Lin, Ruiyue & Liu, Qian, 2021. "Multiplier dynamic data envelopment analysis based on directional distance function: An application to mutual funds," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1043-1057.
    19. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    20. Bruno Ricca & Massimiliano Ferrara & Salvatore Loprevite, 2023. "Searching for an effective accounting-based score of firm performance: a comparative study between different synthesis techniques," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3575-3602, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tavana, Madjid & Izadikhah, Mohammad & Toloo, Mehdi & Roostaee, Razieh, 2021. "A new non-radial directional distance model for data envelopment analysis problems with negative and flexible measures," Omega, Elsevier, vol. 102(C).
    2. Lin, Shuguang & Shi, Hai-Liu & Wang, Ying-Ming, 2022. "An integrated slacks-based super-efficiency measure in the presence of nonpositive data," Omega, Elsevier, vol. 111(C).
    3. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    4. Lin, Ruiyue & Liu, Yue, 2019. "Super-efficiency based on the directional distance function in the presence of negative data," Omega, Elsevier, vol. 85(C), pages 26-34.
    5. Cova-Alonso, David José & Díaz-Hernández, Juan José & Martínez-Budría, Eduardo, 2021. "A strong efficiency measure for CCR/BCC models," European Journal of Operational Research, Elsevier, vol. 291(1), pages 284-295.
    6. Lee, Hsuan-Shih, 2021. "Slacks-based measures of efficiency and super-efficiency in presence of nonpositive data," Omega, Elsevier, vol. 103(C).
    7. Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "A new measure of technical efficiency in data envelopment analysis based on the maximization of hypervolumes: Benchmarking, properties and computational aspects," European Journal of Operational Research, Elsevier, vol. 293(1), pages 263-275.
    8. Aparicio, Juan & Pastor, Jesus T. & Vidal, Fernando, 2016. "The directional distance function and the translation invariance property," Omega, Elsevier, vol. 58(C), pages 1-3.
    9. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
    10. Amineh Ghazi & Farhad Hosseinzadeh Lotfi & Masoud Sanei, 2020. "Hybrid efficiency measurement and target setting based on identifying defining hyperplanes of the PPS with negative data," Operational Research, Springer, vol. 20(2), pages 1055-1092, June.
    11. Kao, Chiang, 2020. "Measuring efficiency in a general production possibility set allowing for negative data," European Journal of Operational Research, Elsevier, vol. 282(3), pages 980-988.
    12. Andrey V. Lychev & Svetlana V. Ratner & Vladimir E. Krivonozhko, 2023. "Two-Stage Data Envelopment Analysis Models with Negative System Outputs for the Efficiency Evaluation of Government Financial Policies," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
    13. Asmild, Mette & Pastor, Jesús T., 2010. "Slack free MEA and RDM with comprehensive efficiency measures," Omega, Elsevier, vol. 38(6), pages 475-483, December.
    14. Youchao Tan & Udaya Shetty & Ali Diabat & T. Pakkala, 2015. "Aggregate directional distance formulation of DEA with integer variables," Annals of Operations Research, Springer, vol. 235(1), pages 741-756, December.
    15. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    16. Juan Aparicio & Magdalena Kapelko, 2019. "Enhancing the Measurement of Composite Indicators of Corporate Social Performance," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 807-826, July.
    17. Juan Aparicio & Magdalena Kapelko & Juan F. Monge, 2020. "A Well-Defined Composite Indicator: An Application to Corporate Social Responsibility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 299-323, July.
    18. Mehdi Soltanifar & Hamid Sharafi, 2022. "A modified DEA cross efficiency method with negative data and its application in supplier selection," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 265-296, January.
    19. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    20. Aparicio, Juan & Cordero, Jose M. & Gonzalez, Martin & Lopez-Espin, Jose J., 2018. "Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries," Omega, Elsevier, vol. 79(C), pages 9-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:282:y:2020:i:3:p:926-935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.