IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v235y2015i1p741-75610.1007-s10479-015-1891-8.html
   My bibliography  Save this article

Aggregate directional distance formulation of DEA with integer variables

Author

Listed:
  • Youchao Tan
  • Udaya Shetty
  • Ali Diabat
  • T. Pakkala

Abstract

Conventional data envelopment analysis (DEA) models make the assumption of non-negativity and real values in the input and output of the systems that are under study. This paper combines these two interrelated ideas. One is the non-radial measurement of efficiency by establishing an aggregate directional distance formulation of the DEA model (ADDM). Another is the introduction of an integer directional distance function. Usually, directional distance formulations of DEA and ADDM projections of efficient targets for inefficient decision making units (DMUs) have non-integer values. In this paper directional distance function is modified and a mixed integer directional distance formulation of DEA is proposed. This model guarantees integer targets for inefficient DMUs and is applicable to measure efficiency even when input and output variables are negative integer values. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Youchao Tan & Udaya Shetty & Ali Diabat & T. Pakkala, 2015. "Aggregate directional distance formulation of DEA with integer variables," Annals of Operations Research, Springer, vol. 235(1), pages 741-756, December.
  • Handle: RePEc:spr:annopr:v:235:y:2015:i:1:p:741-756:10.1007/s10479-015-1891-8
    DOI: 10.1007/s10479-015-1891-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-015-1891-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-015-1891-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazemi Matin, Reza & Kuosmanen, Timo, 2009. "Theory of integer-valued data envelopment analysis under alternative returns to scale axioms," Omega, Elsevier, vol. 37(5), pages 988-995, October.
    2. M C A Silva Portela & E Thanassoulis & G Simpson, 2004. "Negative data in DEA: a directional distance approach applied to bank branches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1111-1121, October.
    3. Wagner A. Kamakura, 1988. "Note---A Note on "The Use of Categorical Variables in Data Envelopment Analysis"," Management Science, INFORMS, vol. 34(10), pages 1273-1276, October.
    4. Kuosmanen, Timo & Matin, Reza Kazemi, 2009. "Theory of integer-valued data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 192(2), pages 658-667, January.
    5. Ali Diabat & Udaya Shetty & T. Pakkala, 2015. "Improved efficiency measures through directional distance formulation of data envelopment analysis," Annals of Operations Research, Springer, vol. 229(1), pages 325-346, June.
    6. Watanabe, Michio & Tanaka, Katsuya, 2007. "Efficiency analysis of Chinese industry: A directional distance function approach," Energy Policy, Elsevier, vol. 35(12), pages 6323-6331, December.
    7. Emrouznejad, Ali & Anouze, Abdel Latef & Thanassoulis, Emmanuel, 2010. "A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA," European Journal of Operational Research, Elsevier, vol. 200(1), pages 297-304, January.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    10. Borger, Bruno De & Ferrier, Gary D. & Kerstens, Kristiaan, 1998. "The choice of a technical efficiency measure on the free disposal hull reference technology: A comparison using US banking data," European Journal of Operational Research, Elsevier, vol. 105(3), pages 427-446, March.
    11. Pastor, J. T. & Ruiz, J. L. & Sirvent, I., 1999. "An enhanced DEA Russell graph efficiency measure," European Journal of Operational Research, Elsevier, vol. 115(3), pages 596-607, June.
    12. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    13. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    14. John J. Rousseau & John H. Semple, 1993. "Notes: Categorical Outputs in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(3), pages 384-386, March.
    15. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    16. Emrouznejad, Ali & Amin, Gholam R. & Thanassoulis, Emmanuel & Anouze, Abdel Latef, 2010. "On the boundedness of the SORM DEA models with negative data," European Journal of Operational Research, Elsevier, vol. 206(1), pages 265-268, October.
    17. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    18. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    19. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    20. J A Sharp & W Meng & W Liu, 2007. "A modified slacks-based measure model for data envelopment analysis with ‘natural’ negative outputs and inputs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1672-1677, December.
    21. Emrouznejad, Ali & De Witte, Kristof, 2010. "COOPER-framework: A unified process for non-parametric projects," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1573-1586, December.
    22. Emrouznejad, A. & De Witte, K., 2010. "COOPER-framework: A Unified Standard Process for Non-parametric Projects," Working Papers 18, Top Institute for Evidence Based Education Research.
    23. Rolf Färe & Shawna Grosskopf, 2000. "Theory and Application of Directional Distance Functions," Journal of Productivity Analysis, Springer, vol. 13(2), pages 93-103, March.
    24. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    25. Rajiv D. Banker & Richard C. Morey, 1986. "The Use of Categorical Variables in Data Envelopment Analysis," Management Science, INFORMS, vol. 32(12), pages 1613-1627, December.
    26. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    27. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2020. "Measuring efficiency in a general production possibility set allowing for negative data," European Journal of Operational Research, Elsevier, vol. 282(3), pages 980-988.
    2. Ali Diabat & Udaya Shetty & T. Pakkala, 2015. "Improved efficiency measures through directional distance formulation of data envelopment analysis," Annals of Operations Research, Springer, vol. 229(1), pages 325-346, June.
    3. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    4. Tavana, Madjid & Izadikhah, Mohammad & Toloo, Mehdi & Roostaee, Razieh, 2021. "A new non-radial directional distance model for data envelopment analysis problems with negative and flexible measures," Omega, Elsevier, vol. 102(C).
    5. Jie Wu & Zhixiang Zhou, 2015. "A mixed-objective integer DEA model," Annals of Operations Research, Springer, vol. 228(1), pages 81-95, May.
    6. Cheng, Gang & Zervopoulos, Panagiotis & Qian, Zhenhua, 2013. "A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 225(1), pages 100-105.
    7. Jesus Pastor & C. Lovell & Juan Aparicio, 2012. "Families of linear efficiency programs based on Debreu’s loss function," Journal of Productivity Analysis, Springer, vol. 38(2), pages 109-120, October.
    8. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    9. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    10. Asmild, Mette & Pastor, Jesús T., 2010. "Slack free MEA and RDM with comprehensive efficiency measures," Omega, Elsevier, vol. 38(6), pages 475-483, December.
    11. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    12. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Measuring technical efficiency for multi-input multi-output production processes through OneClass Support Vector Machines: a finite-sample study," Operational Research, Springer, vol. 23(3), pages 1-33, September.
    13. Aparicio, Juan & Monge, Juan F., 2022. "The generalized range adjusted measure in data envelopment analysis: Properties, computational aspects and duality," European Journal of Operational Research, Elsevier, vol. 302(2), pages 621-632.
    14. Subhash C. Ray, 2018. "Data Envelopment Analysis with Alternative Returns to Scale," Working papers 2018-20, University of Connecticut, Department of Economics.
    15. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    16. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    17. Aparicio, Juan & Borras, Fernando & Pastor, Jesus T. & Vidal, Fernando, 2015. "Measuring and decomposing firm׳s revenue and cost efficiency: The Russell measures revisited," International Journal of Production Economics, Elsevier, vol. 165(C), pages 19-28.
    18. Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "A new measure of technical efficiency in data envelopment analysis based on the maximization of hypervolumes: Benchmarking, properties and computational aspects," European Journal of Operational Research, Elsevier, vol. 293(1), pages 263-275.
    19. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    20. Kao, Chiang, 2022. "Measuring efficiency in a general production possibility set allowing for negative data: An extension and a focus on returns to scale," European Journal of Operational Research, Elsevier, vol. 296(1), pages 267-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:235:y:2015:i:1:p:741-756:10.1007/s10479-015-1891-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.