IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v191y2008i1p112-126.html
   My bibliography  Save this article

Characterization and modelling of guillotine constraints

Author

Listed:
  • Ben Messaoud, Said
  • Chu, Chengbin
  • Espinouse, Marie-Laure

Abstract

This paper focuses on guillotine cuts which often arise in real-life cutting stock problems. In order to construct a solution verifying guillotine constraints, the first step is to know how to determine whether a given cutting pattern is a guillotine pattern. For this purpose, we first characterize guillotine patterns by proving a necessary and sufficient condition. Then, we propose a polynomial algorithm to check this condition. Based on this mathematical characterization of guillotine patterns, we then show that guillotine constraints can be formulated into linear inequalities. The performance of the algorithm to check guillotine cutting patterns is evaluated by means of computational results.

Suggested Citation

  • Ben Messaoud, Said & Chu, Chengbin & Espinouse, Marie-Laure, 2008. "Characterization and modelling of guillotine constraints," European Journal of Operational Research, Elsevier, vol. 191(1), pages 112-126, November.
  • Handle: RePEc:eee:ejores:v:191:y:2008:i:1:p:112-126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00908-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
    2. Dowsland, Kathryn A. & Dowsland, William B., 1992. "Packing problems," European Journal of Operational Research, Elsevier, vol. 56(1), pages 2-14, January.
    3. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    4. Andrea Lodi & Silvano Martello & Daniele Vigo, 1999. "Heuristic and Metaheuristic Approaches for a Class of Two-Dimensional Bin Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 345-357, November.
    5. Hadjiconstantinou, Eleni & Christofides, Nicos, 1995. "An exact algorithm for general, orthogonal, two-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 83(1), pages 39-56, May.
    6. P. C. Gilmore & R. E. Gomory, 1963. "A Linear Programming Approach to the Cutting Stock Problem---Part II," Operations Research, INFORMS, vol. 11(6), pages 863-888, December.
    7. Biro, Milos & Boros, Endre, 1984. "Network flows and non-guillotine cutting patterns," European Journal of Operational Research, Elsevier, vol. 16(2), pages 215-221, May.
    8. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    9. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.
    10. Andrea Lodi & Silvano Martello & Daniele Vigo, 2004. "Models and Bounds for Two-Dimensional Level Packing Problems," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 363-379, September.
    11. J. E. Beasley, 1985. "An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure," Operations Research, INFORMS, vol. 33(1), pages 49-64, February.
    12. P. C. Gilmore & R. E. Gomory, 1965. "Multistage Cutting Stock Problems of Two and More Dimensions," Operations Research, INFORMS, vol. 13(1), pages 94-120, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    2. Vera Neidlein & Andrèa C. G. Vianna & Marcos N. Arenales & Gerhard Wäscher, 2008. "The Two-Dimensional, Rectangular, Guillotineable-Layout Cutting Problem with a Single Defect," FEMM Working Papers 08035, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    3. François Clautiaux & Antoine Jouglet & Aziz Moukrim, 2013. "A New Graph-Theoretical Model for the Guillotine-Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 72-86, February.
    4. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    5. Pedroso, João Pedro, 2020. "Heuristics for packing semifluids," European Journal of Operational Research, Elsevier, vol. 282(3), pages 823-834.
    6. Fabio Furini & Enrico Malaguti & Dimitri Thomopulos, 2016. "Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 736-751, November.
    7. Wei, Lijun & Tian, Tian & Zhu, Wenbin & Lim, Andrew, 2014. "A block-based layer building approach for the 2D guillotine strip packing problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 58-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baldacci, Roberto & Boschetti, Marco A., 2007. "A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1136-1149, December.
    2. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    3. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    4. Song, X. & Chu, C.B. & Nie, Y.Y. & Bennell, J.A., 2006. "An iterative sequential heuristic procedure to a real-life 1.5-dimensional cutting stock problem," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1870-1889, December.
    5. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    6. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    7. Yanasse, Horacio Hideki & Pinto Lamosa, Maria Jose, 2007. "An integrated cutting stock and sequencing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1353-1370, December.
    8. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    9. Vera Neidlein & Andrèa C. G. Vianna & Marcos N. Arenales & Gerhard Wäscher, 2008. "The Two-Dimensional, Rectangular, Guillotineable-Layout Cutting Problem with a Single Defect," FEMM Working Papers 08035, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    10. W. D. D. Madhavee & N. Saldin & U. C. Vaidyarathna & C. J. Jayawardene, 2018. "A Practical Application of the Generalized Cutting Stock Algorithm," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 4(3), pages 15-21, 03-2018.
    11. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    12. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    13. Morabito, Reinaldo & Belluzzo, Luciano, 2007. "Optimising the cutting of wood fibre plates in the hardboard industry," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1405-1420, December.
    14. Gonçalves, José Fernando & Wäscher, Gerhard, 2020. "A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects," European Journal of Operational Research, Elsevier, vol. 286(3), pages 867-882.
    15. Puchinger, Jakob & Raidl, Gunther R., 2007. "Models and algorithms for three-stage two-dimensional bin packing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1304-1327, December.
    16. Cintra, G.F. & Miyazawa, F.K. & Wakabayashi, Y. & Xavier, E.C., 2008. "Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation," European Journal of Operational Research, Elsevier, vol. 191(1), pages 61-85, November.
    17. David Pisinger & Mikkel Sigurd, 2007. "Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 36-51, February.
    18. Letchford, Adam N. & Amaral, Andre, 2001. "Analysis of upper bounds for the Pallet Loading Problem," European Journal of Operational Research, Elsevier, vol. 132(3), pages 582-593, August.
    19. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    20. Teodor Gabriel Crainic & Guido Perboli & Roberto Tadei, 2008. "Extreme Point-Based Heuristics for Three-Dimensional Bin Packing," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 368-384, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:1:p:112-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.