IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v276y2019i3p1178-1192.html
   My bibliography  Save this article

On the calibration of the 3/2 model

Author

Listed:
  • Gudmundsson, Hilmar
  • Vyncke, David

Abstract

We consider the problem of calibrating the 3/2 stochastic volatility model to option data. In comparison to the characteristic function of the Heston model, the characteristic function of the 3/2 model can be up to 50 times slower to evaluate. This makes the standard least squares calibration with finite-difference gradients unreasonably slow. To address this problem we derive the analytic gradient of the characteristic function in compact form. We then propose a computational method for the analytic gradient formula which caches intermediate results across the partial derivatives, in addition to the strike dimension and the maturity dimension. Compared to the fastest method of calibrating the 3/2 model which we could find in the literature, the method proposed in this paper is more than 10 times faster. We also discuss the issue of apparent non-convexity in the least squares calibration of the 3/2 model for market data. To tackle it, we propose a regularized calibration where the regularization point is obtained using “risk neutral” MCMC estimation of the model. We find that this approach is particularly well suited for the calibration problem as it generates naturally a consistent damping matrix for the parameter estimates, in addition to being very fast.

Suggested Citation

  • Gudmundsson, Hilmar & Vyncke, David, 2019. "On the calibration of the 3/2 model," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1178-1192.
  • Handle: RePEc:eee:ejores:v:276:y:2019:i:3:p:1178-1192
    DOI: 10.1016/j.ejor.2019.01.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719301122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.01.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudio Albanese & Ken Jackson & Petter Wiberg, 2004. "A new Fourier transform algorithm for value-at-risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 328-338.
    2. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    3. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    4. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    5. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.
    6. Brandt, Michael W. & Santa-Clara, Pedro, 2002. "Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets," Journal of Financial Economics, Elsevier, vol. 63(2), pages 161-210, February.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. del Baño Rollin, Sebastian & Ferreiro-Castilla, Albert & Utzet, Frederic, 2010. "On the density of log-spot in the Heston volatility model," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2037-2063, September.
    9. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    10. Wong, Hoi Ying & Lo, Yu Wai, 2009. "Option pricing with mean reversion and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 197(1), pages 179-187, August.
    11. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    12. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    13. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    14. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    15. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hervé Andres & Pierre-Edouard Arrouy & Paul Bonnefoy & Alexandre Boumezoued & Sophian Mehalla, 2020. "Fast calibration of the LIBOR Market Model with Stochastic Volatility based on analytical gradient," Working Papers hal-02875623, HAL.
    2. Herv'e Andres & Pierre-Edouard Arrouy & Paul Bonnefoy & Alexandre Boumezoued & Sophian Mehalla, 2020. "Fast calibration of the LIBOR Market Model with Stochastic Volatility based on analytical gradient," Papers 2006.13521, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    2. Adam Aleksander Majewski & Giacomo Bormetti & Fulvio Corsi, 2014. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Papers 1404.3555, arXiv.org.
    3. Olesia Verchenko, 2011. "Testing option pricing models: complete and incomplete markets," Discussion Papers 38, Kyiv School of Economics.
    4. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    5. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    6. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    7. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    8. Michael Rockinger & Maria Semenova, 2005. "Estimation of Jump-Diffusion Process vis Empirical Characteristic Function," FAME Research Paper Series rp150, International Center for Financial Asset Management and Engineering.
    9. Xiaodong Du & Dermot J. Hayes & Cindy L. Yu, 2010. "Dynamics of Biofuel Stock Prices: A Bayesian Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 418-425.
    10. Majewski, A. A. & Bormetti, G. & Corsi, F., 2013. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Working Papers 13/11, Department of Economics, City University London.
    11. A. S. Hurn & K. A. Lindsay & A. J. McClelland, 2015. "Estimating the Parameters of Stochastic Volatility Models Using Option Price Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 579-594, October.
    12. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    13. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    14. Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
    15. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    16. Chourdakis, Kyriakos & Dotsis, George, 2011. "Maximum likelihood estimation of non-affine volatility processes," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 533-545, June.
    17. Timothy Sharp & Steven Li & David Allen, 2010. "Empirical performance of affine option pricing models: evidence from the Australian index options market," Applied Financial Economics, Taylor & Francis Journals, vol. 20(6), pages 501-514.
    18. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    19. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    20. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:276:y:2019:i:3:p:1178-1192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.