IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v275y2019i2p708-720.html
   My bibliography  Save this article

Competence-based estimation of activity duration in IT projects

Author

Listed:
  • Korytkowski, Przemyslaw
  • Malachowski, Bartlomiej

Abstract

The aim of project management is to successfully complete the project on schedule and within budget. Estimation of project activity duration is a key feature of scheduling. The individual activities making up the schedule and the estimation of their duration are crucial for defining the project timetable. The resulting scheduling problem falls into the class of Multi-Skill Resource-Constrained Project Scheduling Problems. In this paper we propose a novel methodology for Activity Duration Estimation in IT projects. The methodology uses the Hierarchical Skill Model and takes into account the experience of project team members, described by required and possessed skills. Skills are modeled as a weighted digraph, and learning curves are used to express individual learning rates. An illustrative example using a software project is provided. Incorporating skill-based modeling into project scheduling results in more precise estimation of actual and future performance.

Suggested Citation

  • Korytkowski, Przemyslaw & Malachowski, Bartlomiej, 2019. "Competence-based estimation of activity duration in IT projects," European Journal of Operational Research, Elsevier, vol. 275(2), pages 708-720.
  • Handle: RePEc:eee:ejores:v:275:y:2019:i:2:p:708-720
    DOI: 10.1016/j.ejor.2018.11.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718310026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.11.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    2. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    3. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    4. Walter Gutjahr & Stefan Katzensteiner & Peter Reiter & Christian Stummer & Michaela Denk, 2008. "Competence-driven project portfolio selection, scheduling and staff assignment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(3), pages 281-306, September.
    5. Plaza, Malgorzata & Ngwenyama, Ojelanki K. & Rohlf, Katrin, 2010. "A comparative analysis of learning curves: Implications for new technology implementation management," European Journal of Operational Research, Elsevier, vol. 200(2), pages 518-528, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiong & Ferreira, Fernando A.F. & Chang, Ching-Ter, 2022. "Multi-objective competency-based approach to project scheduling and staff assignment: Case study of an internal audit project," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    2. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    3. Bernardo F. Almeida & Isabel Correia & Francisco Saldanha-da-Gama, 2018. "A biased random-key genetic algorithm for the project scheduling problem with flexible resources," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 283-308, July.
    4. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    5. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    6. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).
    7. Vaseghi, Forough & Martens, Annelies & Vanhoucke, Mario, 2024. "Analysis of the impact of corrective actions for stochastic project networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 503-518.
    8. Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.
    9. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
    10. Behrad Barghi & Shahram Shadrokh Sikari, 2022. "Meta-heuristic Solution with Considering Setup Time for Multi-Skilled Project Scheduling Problem," SN Operations Research Forum, Springer, vol. 3(1), pages 1-23, March.
    11. Snauwaert, Jakob & Vanhoucke, Mario, 2023. "A classification and new benchmark instances for the multi-skilled resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 1-19.
    12. Guastaroba, G. & Côté, J.-F. & Coelho, L.C., 2021. "The Multi-Period Workforce Scheduling and Routing Problem," Omega, Elsevier, vol. 102(C).
    13. Roland Braune & Karl F. Doerner, 2017. "Real-world flexible resource profile scheduling with multiple criteria: learning scalarization functions for MIP and heuristic approaches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 952-972, August.
    14. Pejman Peykani & Jafar Gheidar-Kheljani & Sheida Shahabadi & Seyyed Hassan Ghodsypour & Mojtaba Nouri, 2023. "A two-phase resource-constrained project scheduling approach for design and development of complex product systems," Operational Research, Springer, vol. 23(1), pages 1-25, March.
    15. Gutjahr, Walter J., 2015. "Bi-Objective Multi-Mode Project Scheduling Under Risk Aversion," European Journal of Operational Research, Elsevier, vol. 246(2), pages 421-434.
    16. Luise-Sophie Hoffmann & Carolin Kellenbrink & Stefan Helber, 2020. "Simultaneous structuring and scheduling of multiple projects with flexible project structures," Journal of Business Economics, Springer, vol. 90(5), pages 679-711, June.
    17. Raphael Kramer & Mauro Dell’Amico & Manuel Iori, 2017. "A batching-move iterated local search algorithm for the bin packing problem with generalized precedence constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6288-6304, November.
    18. Xiaowei Lin & Jing Zhou & Lianmin Zhang & Yinlian Zeng, 2021. "Revenue sharing for resource reallocation among project activity contractors," Annals of Operations Research, Springer, vol. 301(1), pages 121-141, June.
    19. Servranckx, Tom & Vanhoucke, Mario, 2019. "A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs," European Journal of Operational Research, Elsevier, vol. 273(3), pages 841-860.
    20. Alexander Tesch, 2020. "A polyhedral study of event-based models for the resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 23(2), pages 233-251, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:275:y:2019:i:2:p:708-720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.