IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v270y2018i2p698-708.html
   My bibliography  Save this article

Predicting online invitation responses with a competing risk model using privacy-friendly social event data

Author

Listed:
  • Li, Libo

Abstract

Predicting people's responses to invitations is an important issue for social event management, as the decision-making process behind member responses to invitations is complicated. The purpose of this paper is to suggest a privacy-friendly method to predict whether and when people will respond to open invitations. We apply the competing risk model to predict member responses. The predictive model uses past social event participation data to infer a network structure among people who accept or reject invitations. The inferred networks collectively show the extent to which people are likely to accept or reject invitations. Validated using real datasets including 31,230 people and 8,885 events, the proposed method not only presents the variables that predict attendance (such as past attendance and social network), but also those that predict faster responses. This approach is privacy friendly, as it requires no personal information regarding people and social events (such as name, age and gender or event content). This work contributes to the predictive modeling literature as the first study of a competing risk model developed for replies to a social invitation. Our findings will help event organizers predict how many people will attend events, allowing them to organize effectively.

Suggested Citation

  • Li, Libo, 2018. "Predicting online invitation responses with a competing risk model using privacy-friendly social event data," European Journal of Operational Research, Elsevier, vol. 270(2), pages 698-708.
  • Handle: RePEc:eee:ejores:v:270:y:2018:i:2:p:698-708
    DOI: 10.1016/j.ejor.2018.03.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718302649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.03.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miyashiro, Ryuhei & Takano, Yuichi, 2015. "Mixed integer second-order cone programming formulations for variable selection in linear regression," European Journal of Operational Research, Elsevier, vol. 247(3), pages 721-731.
    2. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    3. Dirick, Lore & Claeskens, Gerda & Baesens, Bart, 2015. "An Akaike information criterion for multiple event mixture cure models," European Journal of Operational Research, Elsevier, vol. 241(2), pages 449-457.
    4. Pittman, S.J. & Christensen, J.D. & Caldow, C. & Menza, C. & Monaco, M.E., 2007. "Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean," Ecological Modelling, Elsevier, vol. 204(1), pages 9-21.
    5. Patrick J. Heagerty & Yingye Zheng, 2005. "Survival Model Predictive Accuracy and ROC Curves," Biometrics, The International Biometric Society, vol. 61(1), pages 92-105, March.
    6. Gilsing, Victor & Nooteboom, Bart & Vanhaverbeke, Wim & Duysters, Geert & van den Oord, Ad, 2008. "Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density," Research Policy, Elsevier, vol. 37(10), pages 1717-1731, December.
    7. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    8. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    9. Leow, Mindy & Crook, Jonathan, 2016. "The stability of survival model parameter estimates for predicting the probability of default: Empirical evidence over the credit crisis," European Journal of Operational Research, Elsevier, vol. 249(2), pages 457-464.
    10. Aytug, Haldun, 2015. "Feature selection for support vector machines using Generalized Benders Decomposition," European Journal of Operational Research, Elsevier, vol. 244(1), pages 210-218.
    11. Simon, Noah & Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2011. "Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i05).
    12. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G., 2016. "Predictive analytics model for healthcare planning and scheduling," European Journal of Operational Research, Elsevier, vol. 253(1), pages 121-131.
    13. Xiao Fang & Paul Jen-Hwa Hu & Zhepeng (Lionel) Li & Weiyu Tsai, 2013. "Predicting Adoption Probabilities in Social Networks," Information Systems Research, INFORMS, vol. 24(1), pages 128-145, March.
    14. Mattila, V. & Virtanen, K., 2015. "Ranking and selection for multiple performance measures using incomplete preference information," European Journal of Operational Research, Elsevier, vol. 242(2), pages 568-579.
    15. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    2. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    3. Gang Chen & Shuaiyong Xiao & Chenghong Zhang & Huimin Zhao, 2023. "A Theory-Driven Deep Learning Method for Voice Chat–Based Customer Response Prediction," Information Systems Research, INFORMS, vol. 34(4), pages 1513-1532, December.
    4. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2021. "Tensorial graph learning for link prediction in generalized heterogeneous networks," European Journal of Operational Research, Elsevier, vol. 290(1), pages 219-234.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    2. Benedicte Sjo Tislevoll & Monica Hellesøy & Oda Helen Eck Fagerholt & Stein-Erik Gullaksen & Aashish Srivastava & Even Birkeland & Dimitrios Kleftogiannis & Pilar Ayuda-Durán & Laure Piechaczyk & Dagi, 2023. "Early response evaluation by single cell signaling profiling in acute myeloid leukemia," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Andreas Groll & Gerhard Tutz, 2017. "Variable selection in discrete survival models including heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 305-338, April.
    4. Kevin He & Yue Wang & Xiang Zhou & Han Xu & Can Huang, 2019. "An improved variable selection procedure for adaptive Lasso in high-dimensional survival analysis," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 569-585, July.
    5. Matthew F Dixon, 2017. "Sequence Classification of the Limit Order Book using Recurrent Neural Networks," Papers 1707.05642, arXiv.org.
    6. Jie Xiong & Zhitong Bing & Yanlin Su & Defeng Deng & Xiaoning Peng, 2014. "An Integrated mRNA and microRNA Expression Signature for Glioblastoma Multiforme Prognosis," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-8, May.
    7. Liao Zhu & Robert A. Jarrow & Martin T. Wells, 2021. "Time-Invariance Coefficients Tests with the Adaptive Multi-Factor Model," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 1-30, December.
    8. Achim Ahrens, 2015. "Civil conflicts in Africa: Climate, economic shocks, nighttime lights and spill-over effects," SEEC Discussion Papers 1501, Spatial Economics and Econometrics Centre, Heriot Watt University.
    9. Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
    10. Gal Dinstag & David Amar & Erik Ingelsson & Euan Ashley & Ron Shamir, 2019. "Personalized prediction of adverse heart and kidney events using baseline and longitudinal data from SPRINT and ACCORD," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-12, August.
    11. Mammen, Enno & Wilke, Ralf A. & Zapp, Kristina Maria, 2022. "Estimation of group structures in panel models with individual fixed effects," ZEW Discussion Papers 22-023, ZEW - Leibniz Centre for European Economic Research.
    12. Shikhar Uttam & Andrew M. Stern & Christopher J. Sevinsky & Samantha Furman & Filippo Pullara & Daniel Spagnolo & Luong Nguyen & Albert Gough & Fiona Ginty & D. Lansing Taylor & S. Chakra Chennubhotla, 2020. "Spatial domain analysis predicts risk of colorectal cancer recurrence and infers associated tumor microenvironment networks," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    13. Liao Zhu, 2021. "The Adaptive Multi-Factor Model and the Financial Market," Papers 2107.14410, arXiv.org, revised Aug 2021.
    14. Kou Fujimori, 2022. "The variable selection by the Dantzig selector for Cox’s proportional hazards model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 515-537, June.
    15. Liao Zhu & Sumanta Basu & Robert A. Jarrow & Martin T. Wells, 2020. "High-Dimensional Estimation, Basis Assets, and the Adaptive Multi-Factor Model," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-52, December.
    16. Wu, Tong Tong & He, Xin, 2012. "Coordinate ascent for penalized semiparametric regression on high-dimensional panel count data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 25-33, January.
    17. Peter H. Egger & Joseph Francois & Douglas R. Nelson, 2017. "The Role of Goods-Trade Networks for Services-Trade Volume," The World Economy, Wiley Blackwell, vol. 40(3), pages 532-543, March.
    18. Marton Gosztonyi, 2023. "Comparative Analysis of X-Y-Z Generation Entrepreneurs in a Semi-Peripheral EU Member Country: Insights from Regularized Regression Techniques," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 191-217.
    19. Andreea L. Erciulescu & Jean D. Opsomer, 2022. "A model‐based approach to predict employee compensation components," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1503-1520, November.
    20. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:270:y:2018:i:2:p:698-708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.