IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v242y2015i2p568-579.html
   My bibliography  Save this article

Ranking and selection for multiple performance measures using incomplete preference information

Author

Listed:
  • Mattila, V.
  • Virtanen, K.

Abstract

This paper presents two new procedures for ranking and selection (R&S) problems where the best system designs are selected from a set of competing ones based on multiple performance measures evaluated through stochastic simulation. In the procedures, the performance measures are aggregated with a multi-attribute utility function, and incomplete preference information regarding the weights that reflect the relative importance of the measures is taken into account. A set of feasible weights is determined according to preference statements that are linear constraints on the weights given by a decision-maker. Non-dominated designs are selected using two dominance relations referred to as pairwise and absolute dominance based on estimates for the expected utilities of the designs over the feasible weights. The procedures allocate a limited number of simulation replications among the designs such that the probabilities of correctly selecting the pairwise and absolutely non-dominated designs are maximized. The new procedures offer ease of eliciting the weights compared with existing R&S procedures that aggregate the performance measures using unique weights. Moreover, computational advantages are provided over existing procedures that identify non-dominated designs based on the expected values of the performance measures. The new procedures allow to obtain a smaller number of non-dominated designs. They also identify these designs correctly with a higher probability or require a smaller number of replications for correct selection. Finally, the new procedures allocate a larger number of replications to the non-dominated designs that are therefore evaluated with greater accuracy. These computational advantages are illustrated through several numerical experiments.

Suggested Citation

  • Mattila, V. & Virtanen, K., 2015. "Ranking and selection for multiple performance measures using incomplete preference information," European Journal of Operational Research, Elsevier, vol. 242(2), pages 568-579.
  • Handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:568-579
    DOI: 10.1016/j.ejor.2014.10.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714008492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.10.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Craig W. Kirkwood & Rakesh K. Sarin, 1985. "Ranking with Partial Information: A Method and an Application," Operations Research, INFORMS, vol. 33(1), pages 38-48, February.
    2. Gordon B. Hazen, 1986. "Partial Information, Dominance, and Potential Optimality in Multiattribute Utility Theory," Operations Research, INFORMS, vol. 34(2), pages 296-310, April.
    3. Weber, Martin, 1987. "Decision making with incomplete information," European Journal of Operational Research, Elsevier, vol. 28(1), pages 44-57, January.
    4. John Butler & Douglas J. Morrice & Peter W. Mullarkey, 2001. "A Multiple Attribute Utility Theory Approach to Ranking and Selection," Management Science, INFORMS, vol. 47(6), pages 800-816, June.
    5. T. H. Matheiss & David S. Rubin, 1980. "A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets," Mathematics of Operations Research, INFORMS, vol. 5(2), pages 167-185, May.
    6. Carrizosa, E. & Conde, E. & Fernandez, F. R. & Puerto, J., 1995. "Multi-criteria analysis with partial information about the weighting coefficients," European Journal of Operational Research, Elsevier, vol. 81(2), pages 291-301, March.
    7. Sarin, Rakesh K, 1977. "Screening of multiattribute alternatives," Omega, Elsevier, vol. 5(4), pages 481-489.
    8. Loo Lee & Ek Chew & Suyan Teng & David Goldsman, 2010. "Finding the non-dominated Pareto set for multi-objective simulation models," IISE Transactions, Taylor & Francis Journals, vol. 42(9), pages 656-674.
    9. Ahti A. Salo & Raimo P. Hämäläinen, 1992. "Preference Assessment by Imprecise Ratio Statements," Operations Research, INFORMS, vol. 40(6), pages 1053-1061, December.
    10. Susan R. Hunter & Raghu Pasupathy, 2013. "Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 527-542, August.
    11. Park, Kyung Sam & Kim, Soung Hie, 1997. "Tools for interactive multiattribute decisionmaking with incompletely identified information," European Journal of Operational Research, Elsevier, vol. 98(1), pages 111-123, April.
    12. Teng, Suyan & Lee, Loo Hay & Chew, Ek Peng, 2010. "Integration of indifference-zone with multi-objective computing budget allocation," European Journal of Operational Research, Elsevier, vol. 203(2), pages 419-429, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juergen Branke & Wen Zhang, 2019. "Identifying efficient solutions via simulation: myopic multi-objective budget allocation for the bi-objective case," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 831-865, September.
    2. Groves, Matthew & Branke, Juergen, 2019. "Top-κ selection with pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 274(2), pages 615-626.
    3. Li, Libo, 2018. "Predicting online invitation responses with a competing risk model using privacy-friendly social event data," European Journal of Operational Research, Elsevier, vol. 270(2), pages 698-708.
    4. Harju, Mikko & Liesiö, Juuso & Virtanen, Kai, 2019. "Spatial multi-attribute decision analysis: Axiomatic foundations and incomplete preference information," European Journal of Operational Research, Elsevier, vol. 275(1), pages 167-181.
    5. Wang, Zhou-Jing, 2015. "A note on “A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making”," European Journal of Operational Research, Elsevier, vol. 247(3), pages 867-871.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sam Park, Kyung & Sang Lee, Kyung & Seong Eum, Yun & Park, Kwangtae, 2001. "Extended methods for identifying dominance and potential optimality in multi-criteria analysis with imprecise information," European Journal of Operational Research, Elsevier, vol. 134(3), pages 557-563, November.
    2. Ahn, Byeong Seok & Sam Park, Kyung & Hee Han, Chang & Kyeong Kim, Jae, 2000. "Multi-attribute decision aid under incomplete information and hierarchical structure," European Journal of Operational Research, Elsevier, vol. 125(2), pages 431-439, September.
    3. Salo, Ahti & Punkka, Antti, 2005. "Rank inclusion in criteria hierarchies," European Journal of Operational Research, Elsevier, vol. 163(2), pages 338-356, June.
    4. A Mateos & S Ríos-Insua & A Jiménez, 2007. "Dominance, potential optimality and alternative ranking in imprecise multi-attribute decision making," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 326-336, March.
    5. Kim, Soung Hie & Han, Chang Hee, 2000. "Establishing dominance between alternatives with incomplete information in a hierarchically structured attribute tree," European Journal of Operational Research, Elsevier, vol. 122(1), pages 79-90, April.
    6. Liesio, Juuso & Mild, Pekka & Salo, Ahti, 2007. "Preference programming for robust portfolio modeling and project selection," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1488-1505, September.
    7. Harju, Mikko & Liesiö, Juuso & Virtanen, Kai, 2019. "Spatial multi-attribute decision analysis: Axiomatic foundations and incomplete preference information," European Journal of Operational Research, Elsevier, vol. 275(1), pages 167-181.
    8. Antti Punkka & Ahti Salo, 2014. "Scale Dependence and Ranking Intervals in Additive Value Models Under Incomplete Preference Information," Decision Analysis, INFORMS, vol. 11(2), pages 83-104, June.
    9. K S Park & I Jeong, 2011. "How to treat strict preference information in multicriteria decision analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1771-1783, October.
    10. Jyri Mustajoki & Raimo P. Hämäläinen, 2005. "A Preference Programming Approach to Make the Even Swaps Method Even Easier," Decision Analysis, INFORMS, vol. 2(2), pages 110-123, June.
    11. Juho Kokkala & Kimmo Berg & Kai Virtanen & Jirka Poropudas, 2019. "Rationalizable strategies in games with incomplete preferences," Theory and Decision, Springer, vol. 86(2), pages 185-204, March.
    12. Luis V. Montiel & J. Eric Bickel, 2014. "A Generalized Sampling Approach for Multilinear Utility Functions Given Partial Preference Information," Decision Analysis, INFORMS, vol. 11(3), pages 147-170, September.
    13. Salo, Ahti A., 1995. "Interactive decision aiding for group decision support," European Journal of Operational Research, Elsevier, vol. 84(1), pages 134-149, July.
    14. Liesiö, Juuso & Andelmin, Juho & Salo, Ahti, 2020. "Efficient allocation of resources to a portfolio of decision making units," European Journal of Operational Research, Elsevier, vol. 286(2), pages 619-636.
    15. G Özerol & E Karasakal, 2008. "Interactive outranking approaches for multicriteria decision-making problems with imprecise information," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1253-1268, September.
    16. Eduarda Asfora Frej & Danielle Costa Morais & Adiel Teixeira de Almeida, 2022. "Negotiation Support Through Interactive Dominance Relationship Specification," Group Decision and Negotiation, Springer, vol. 31(3), pages 591-620, June.
    17. Tom Pape, 2020. "Value of agreement in decision analysis: Concept, measures and application," Papers 2012.13816, arXiv.org.
    18. Eduarda Asfora Frej & Adiel Teixeira Almeida & Ana Paula Cabral Seixas Costa, 2019. "Using data visualization for ranking alternatives with partial information and interactive tradeoff elicitation," Operational Research, Springer, vol. 19(4), pages 909-931, December.
    19. Pape, Tom, 2017. "Value of agreement in decision analysis: concept, measures and application," LSE Research Online Documents on Economics 68682, London School of Economics and Political Science, LSE Library.
    20. Vetschera, Rudolf, 2017. "Deriving rankings from incomplete preference information: A comparison of different approaches," European Journal of Operational Research, Elsevier, vol. 258(1), pages 244-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:568-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.