IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v270y2018i1p132-145.html
   My bibliography  Save this article

Modeling the shelter site location problem using chance constraints: A case study for Istanbul

Author

Listed:
  • Kınay, Ömer Burak
  • Yetis Kara, Bahar
  • Saldanha-da-Gama, Francisco
  • Correia, Isabel

Abstract

In this work, we develop and test a new modeling framework for the shelter site location problem under demand uncertainty. In particular, we propose a maxmin probabilistic programming model that includes two types of probabilistic constraints: one concerning the utilization rate of the selected shelters and the other concerning the capacity of those shelters. By invoking the central limit theorem we are able to obtain an optimization model with a single set of non-linear constraints which, nonetheless, can be approximated using a family of piecewise linear functions. The latter, in turn, can be modeled mathematically using integer variables. Eventually, an approximate model is obtained, which is a mixed-integer linear programming model that can be tackled by an off-the-shelf solver. Using the proposed reformulation we are able to solve instances of the problem using data associated with the Kartal district in Istanbul, Turkey. We also consider a large-scale instance of the problem by making use of data for the whole Anatolian side of Istanbul. The results obtained are presented and discussed in the paper. They provide clear evidence that capturing uncertainty in the shelter site location problem by means of probabilistic constraints may lead to solutions that are much different from those obtained when a deterministic counterpart is considered. Furthermore, it is possible to observe that the probabilities embedded in the probabilistic constraints have a clear influence in the results, thus supporting the statement that a probabilistic programming modeling framework, if appropriately tuned by a decision maker, can make a full difference when it comes to find good solutions for the problem.

Suggested Citation

  • Kınay, Ömer Burak & Yetis Kara, Bahar & Saldanha-da-Gama, Francisco & Correia, Isabel, 2018. "Modeling the shelter site location problem using chance constraints: A case study for Istanbul," European Journal of Operational Research, Elsevier, vol. 270(1), pages 132-145.
  • Handle: RePEc:eee:ejores:v:270:y:2018:i:1:p:132-145
    DOI: 10.1016/j.ejor.2018.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718302157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murali, Pavankumar & Ordóñez, Fernando & Dessouky, Maged M., 2012. "Facility location under demand uncertainty: Response to a large-scale bio-terror attack," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 78-87.
    2. Beraldi, P. & Bruni, M. E. & Conforti, D., 2004. "Designing robust emergency medical service via stochastic programming," European Journal of Operational Research, Elsevier, vol. 158(1), pages 183-193, October.
    3. Isabel Correia & Francisco Saldanha Gama, 2015. "Facility Location Under Uncertainty," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 177-203, Springer.
    4. Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
    5. Sherali, Hanif D. & Carter, Todd B. & Hobeika, Antoine G., 1991. "A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 439-452, December.
    6. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    7. Espejo, Inmaculada & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2012. "Closest assignment constraints in discrete location problems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 49-58.
    8. Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "Solving a location-routing problem with a multiobjective approach: the design of urban evacuation plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 206-218.
    9. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    10. Xing Hong & Miguel A. Lejeune & Nilay Noyan, 2015. "Stochastic network design for disaster preparedness," IISE Transactions, Taylor & Francis Journals, vol. 47(4), pages 329-357, April.
    11. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    12. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    13. Charles ReVelle & Kathleen Hogan, 1989. "The Maximum Availability Location Problem," Transportation Science, INFORMS, vol. 23(3), pages 192-200, August.
    14. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    15. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    16. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    17. Chen, Albert Y. & Yu, Ting-Yi, 2016. "Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 408-423.
    18. Li, Anna C.Y. & Nozick, Linda & Xu, Ningxiong & Davidson, Rachel, 2012. "Shelter location and transportation planning under hurricane conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 715-729.
    19. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    20. Lin, C.K.Y., 2009. "Stochastic single-source capacitated facility location model with service level requirements," International Journal of Production Economics, Elsevier, vol. 117(2), pages 439-451, February.
    21. Bayram, Vedat & Tansel, Barbaros Ç. & Yaman, Hande, 2015. "Compromising system and user interests in shelter location and evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 146-163.
    22. Li, Lingfeng & Jin, Mingzhou & Zhang, Li, 2011. "Sheltering network planning and management with a case in the Gulf Coast region," International Journal of Production Economics, Elsevier, vol. 131(2), pages 431-440, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.
    2. Ghasemi, Peiman & Khalili-Damghani, Kaveh, 2021. "A robust simulation-optimization approach for pre-disaster multi-period location–allocation–inventory planning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 69-95.
    3. Acar, Müge & Kaya, Onur, 2019. "A healthcare network design model with mobile hospitals for disaster preparedness: A case study for Istanbul earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 273-292.
    4. Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2019. "Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 105-132.
    5. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2021. "Solutions for districting problems with chance-constrained balancing requirements," Omega, Elsevier, vol. 103(C).
    6. Bian Liang & Dapeng Yang & Xinghong Qin & Teresa Tinta, 2019. "A Risk-Averse Shelter Location and Evacuation Routing Assignment Problem in an Uncertain Environment," IJERPH, MDPI, vol. 16(20), pages 1-28, October.
    7. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    8. Correia, Isabel & Melo, Teresa, 2019. "Dynamic facility location problem with modular capacity adjustments under uncertainty," Technical Reports on Logistics of the Saarland Business School 17, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    9. Dominic J. Breuer & Khedidja Seridi & Nadia Lahrichi & Mohit Shukla & James C. Benneyan, 2022. "Robust multi-period capacity, location, and access of rural cardiovascular services under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1013-1039, December.
    10. Ming Liu & Zhongzheng Liu & Rongfan Liu & Lihua Sun, 2022. "Distribution-Free Approaches for an Integrated Cargo Routing and Empty Container Repositioning Problem with Repacking Operations in Liner Shipping Networks," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    11. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    12. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    13. Ming Liu & Rongfan Liu & E Zhang & Chengbin Chu, 2022. "Eco-friendly container transshipment route scheduling problem with repacking operations," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1010-1035, July.
    14. Sun, Huiping & Li, Yuchen & Zhang, Jianghua, 2022. "Collaboration-based reliable optimal casualty evacuation network design for large-scale emergency preparedness," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    15. Fabiana Santos Lima & Ricardo Villarroel Dávalos & Lucila M. S. Campos & Andréa Cristina Trierweiller, 2022. "Framework proposal to support the suppliers’ selection of Humanitarian assistance items: a Flood Case Study in Brazil," Annals of Operations Research, Springer, vol. 315(1), pages 317-340, August.
    16. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    17. Ming Liu & Rongfan Liu & E Zhang & Chengbin Chu, 0. "Eco-friendly container transshipment route scheduling problem with repacking operations," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-26.
    18. Levent Eriskin & Mumtaz Karatas, 2024. "Applying robust optimization to the shelter location–allocation problem: a case study for Istanbul," Annals of Operations Research, Springer, vol. 339(3), pages 1589-1635, August.
    19. Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    20. Liu, Kanglin & Liu, Changchun & Xiang, Xi & Tian, Zhili, 2023. "Testing facility location and dynamic capacity planning for pandemics with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 304(1), pages 150-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    2. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    3. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    4. Wang, Qingyi & Wallace, Stein W., 2022. "Non-compliance in transit-based evacuation pick-up point assignments," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    5. Liu, Kanglin & Liu, Changchun & Xiang, Xi & Tian, Zhili, 2023. "Testing facility location and dynamic capacity planning for pandemics with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 304(1), pages 150-168.
    6. Melissa Gama & Bruno Filipe Santos & Maria Paola Scaparra, 2016. "A multi-period shelter location-allocation model with evacuation orders for flood disasters," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 299-323, September.
    7. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    8. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    9. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    10. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    11. Pérez-Galarce, Francisco & Canales, Linda J. & Vergara, Claudio & Candia-Véjar, Alfredo, 2017. "An optimization model for the location of disaster refuges," Socio-Economic Planning Sciences, Elsevier, vol. 59(C), pages 56-66.
    12. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    13. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    14. Qi, Mingyao & Yang, Ying & Cheng, Chun, 2023. "Location and inventory pre-positioning problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    15. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    16. Shiripour, Saber & Mahdavi-Amiri, Nezam, 2019. "Optimal distribution of the injured in a multi-type transportation network with damage-dependent travel times: Two metaheuristic approaches," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    17. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    18. TURKEŠ, Renata & SÖRENSEN, Kenneth, 2018. "Case studies and random instances for the problem of pre-positioning emergency supplies," Working Papers 2018004, University of Antwerp, Faculty of Business and Economics.
    19. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    20. Levent Eriskin & Mumtaz Karatas, 2024. "Applying robust optimization to the shelter location–allocation problem: a case study for Istanbul," Annals of Operations Research, Springer, vol. 339(3), pages 1589-1635, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:270:y:2018:i:1:p:132-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.