IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v32y2023i9p2956-2974.html
   My bibliography  Save this article

A machine learning approach to deal with ambiguity in the humanitarian decision‐making

Author

Listed:
  • Emilia Grass
  • Janosch Ortmann
  • Burcu Balcik
  • Walter Rei

Abstract

One of the major challenges for humanitarian organizations in response planning is dealing with the inherent ambiguity and uncertainty in disaster situations. The available information that comes from different sources in postdisaster settings may involve missing elements and inconsistencies, which can hamper effective humanitarian decision‐making. In this paper, we propose a new methodological framework based on graph clustering and stochastic optimization to support humanitarian decision‐makers in analyzing the implications of divergent estimates from multiple data sources on final decisions and efficiently integrating these estimates into decision‐making. To the best of our knowledge, the integration of ambiguous information into decision‐making by combining a cluster machine learning method with stochastic optimization has not been done before. We illustrate the proposed approach on a realistic case study that focuses on locating shelters to serve internally displaced people (IDP) in a conflict setting, specifically, the Syrian civil war. We use the needs assessment data from two different reliable sources to estimate the shelter needs in Idleb, a district of Syria. The analysis of data provided by two assessment sources has indicated a high degree of ambiguity due to inconsistent estimates. We apply the proposed methodology to integrate divergent estimates in making shelter location decisions. The results highlight that our methodology leads to higher satisfaction of demand for shelters than other approaches such as a classical stochastic programming model. Moreover, we show that our solution integrates information coming from both sources more efficiently thereby hedging against the ambiguity more effectively. With the newly proposed methodology, the decision‐maker is able to analyze the degree of ambiguity in the data and the degree of consensus between different data sources to ultimately make better decisions for delivering humanitarian aid.

Suggested Citation

  • Emilia Grass & Janosch Ortmann & Burcu Balcik & Walter Rei, 2023. "A machine learning approach to deal with ambiguity in the humanitarian decision‐making," Production and Operations Management, Production and Operations Management Society, vol. 32(9), pages 2956-2974, September.
  • Handle: RePEc:bla:popmgt:v:32:y:2023:i:9:p:2956-2974
    DOI: 10.1111/poms.14018
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.14018
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.14018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:32:y:2023:i:9:p:2956-2974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.