IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v305y2023i1p38-52.html
   My bibliography  Save this article

The continuous maximum capacity path interdiction problem

Author

Listed:
  • Tayyebi, Javad
  • Mitra, Ankan
  • Sefair, Jorge A.

Abstract

This paper studies the continuous maximum capacity path interdiction problem, where two players, user and interdictor, compete in a capacitated network. The user wants to send the maximum possible amount of flow through a path, whose capacity is given by the minimum capacity among its arcs. The budget-constrained interdictor decreases arc capacities by any continuous amount to reduce the quality of the user’s chosen path. We present an efficient algorithm based on a discrete version of the Newton’s method, which helps us solve the problem in polynomial time. We also prove that the problem can be transformed into a zero-sum game, which has always a pure Nash equilibrium point. We demonstrate the performance of our algorithm over a set of randomly generated networks.

Suggested Citation

  • Tayyebi, Javad & Mitra, Ankan & Sefair, Jorge A., 2023. "The continuous maximum capacity path interdiction problem," European Journal of Operational Research, Elsevier, vol. 305(1), pages 38-52.
  • Handle: RePEc:eee:ejores:v:305:y:2023:i:1:p:38-52
    DOI: 10.1016/j.ejor.2022.05.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722004027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.05.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    2. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    3. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    4. Ajay Malaviya & Chase Rainwater & Thomas Sharkey, 2012. "Multi-period network interdiction problems with applications to city-level drug enforcement," IISE Transactions, Taylor & Francis Journals, vol. 44(5), pages 368-380.
    5. Maurice Pollack, 1960. "Letter to the Editor---The Maximum Capacity Through a Network," Operations Research, INFORMS, vol. 8(5), pages 733-736, October.
    6. T. C. Hu, 1961. "Letter to the Editor---The Maximum Capacity Route Problem," Operations Research, INFORMS, vol. 9(6), pages 898-900, December.
    7. Oded Berman & Gabriel Y. Handler, 1987. "Optimal Minimax Path of a Single Service Unit on a Network to Nonservice Destinations," Transportation Science, INFORMS, vol. 21(2), pages 115-122, May.
    8. Climaco, Joao C.N. & Pascoal, Marta M.B. & Craveirinha, Jose M.F. & Captivo, M. Eugenia V., 2007. "Internet packet routing: Application of a K-quickest path algorithm," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1045-1054, September.
    9. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
    10. Liberatore, Federico & Scaparra, Maria P. & Daskin, Mark S., 2012. "Hedging against disruptions with ripple effects in location analysis," Omega, Elsevier, vol. 40(1), pages 21-30, January.
    11. Akgün, Ibrahim & Tansel, Barbaros Ç. & Kevin Wood, R., 2011. "The multi-terminal maximum-flow network-interdiction problem," European Journal of Operational Research, Elsevier, vol. 211(2), pages 241-251, June.
    12. Alan W. McMasters & Thomas M. Mustin, 1970. "Optimal interdiction of a supply network," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 17(3), pages 261-268, September.
    13. P. M. Ghare & D. C. Montgomery & W. C. Turner, 1971. "Optimal interdiction policy for a flow network," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 18(1), pages 37-45, March.
    14. Johannes O. Royset & R. Kevin Wood, 2007. "Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 175-184, May.
    15. Punnen, Abraham P., 1991. "A linear time algorithm for the maximum capacity path problem," European Journal of Operational Research, Elsevier, vol. 53(3), pages 402-404, August.
    16. Markus Schulze, 2011. "A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(2), pages 267-303, February.
    17. Jorge A. Sefair & J. Cole Smith, 2017. "Exact algorithms and bounds for the dynamic assignment interdiction problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 373-387, August.
    18. Bruce Golden, 1978. "A problem in network interdiction," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 25(4), pages 711-713, December.
    19. Jorge A. Sefair & J. Cole Smith & Miguel A. Acevedo & Robert J. Fletcher, 2017. "A defender-attacker model and algorithm for maximizing weighted expected hitting time with application to conservation planning," IISE Transactions, Taylor & Francis Journals, vol. 49(12), pages 1112-1128, December.
    20. Egon Balas, 1965. "An Additive Algorithm for Solving Linear Programs with Zero-One Variables," Operations Research, INFORMS, vol. 13(4), pages 517-546, August.
    21. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2018. "Multiple allocation hub interdiction and protection problems: Model formulations and solution approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 230-245.
    22. Alan Washburn & Kevin Wood, 1995. "Two-Person Zero-Sum Games for Network Interdiction," Operations Research, INFORMS, vol. 43(2), pages 243-251, April.
    23. Ghaffarinasab, Nader & Motallebzadeh, Alireza, 2018. "Hub interdiction problem variants: Models and metaheuristic solution algorithms," European Journal of Operational Research, Elsevier, vol. 267(2), pages 496-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Yin, 2023. "Minimizing the maximal reliable path with a nodal interdiction model considering resource sharing," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    2. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    3. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    4. Bloch, Francis & Chatterjee, Kalyan & Dutta, Bhaskar, 2023. "Attack and interception in networks," Theoretical Economics, Econometric Society, vol. 18(4), November.
    5. Jabarzare, Ziba & Zolfagharinia, Hossein & Najafi, Mehdi, 2020. "Dynamic interdiction networks with applications in illicit supply chains," Omega, Elsevier, vol. 96(C).
    6. Chaya Losada & M. Scaparra & Richard Church & Mark Daskin, 2012. "The stochastic interdiction median problem with disruption intensity levels," Annals of Operations Research, Springer, vol. 201(1), pages 345-365, December.
    7. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    8. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    9. Shen, Yeming & Sharkey, Thomas C. & Szymanski, Boleslaw K. & Wallace, William (Al), 2021. "Interdicting interdependent contraband smuggling, money and money laundering networks," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    10. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.
    11. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    12. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    13. Wei, Ningji & Walteros, Jose L., 2022. "Integer programming methods for solving binary interdiction games," European Journal of Operational Research, Elsevier, vol. 302(2), pages 456-469.
    14. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    15. Keskin, Burcu B. & Griffin, Emily C. & Prell, Jonathan O. & Dilkina, Bistra & Ferber, Aaron & MacDonald, John & Hilend, Rowan & Griffis, Stanley & Gore, Meredith L., 2023. "Quantitative Investigation of Wildlife Trafficking Supply Chains: A Review," Omega, Elsevier, vol. 115(C).
    16. Dimitris Bertsimas & Ebrahim Nasrabadi & Sebastian Stiller, 2013. "Robust and Adaptive Network Flows," Operations Research, INFORMS, vol. 61(5), pages 1218-1242, October.
    17. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2018. "Multiple allocation hub interdiction and protection problems: Model formulations and solution approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 230-245.
    18. Bhatt, Sneha Dhyani & Sinha, Ankur & Jayaswal, Sachin, 2024. "The capacitated r-hub interdiction problem with congestion: Models and solution approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    19. Zhang, Jing & Zhuang, Jun & Behlendorf, Brandon, 2018. "Stochastic shortest path network interdiction with a case study of Arizona–Mexico border," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 62-73.
    20. Brian Lunday & Hanif Sherali, 2012. "Network interdiction to minimize the maximum probability of evasion with synergy between applied resources," Annals of Operations Research, Springer, vol. 196(1), pages 411-442, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:305:y:2023:i:1:p:38-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.