IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1280285.html
   My bibliography  Save this article

An Integrated Metaheuristic Routing Method for Multiple-Block Warehouses with Ultranarrow Aisles and Access Restriction

Author

Listed:
  • Fangyu Chen
  • Gangyan Xu
  • Yongchang Wei

Abstract

A problem-specific routing algorithm integrating ant colony optimization ( ACO ) and integer-coded genetic algorithm ( GA ) is developed to address the newly observed limitations imposed by ultranarrow aisles and access restriction, which exist in the largest e-commerce enterprise with self-run logistics in China. Those limitations prohibit pickers from walking through the whole aisle, and the access restriction even allows them to access the pick aisles only from specific entrances. The ant colony optimization is mainly responsible for generating the initial chromosomes for the genetic algorithm, which then searches the near-optimal solutions of picker-routing with our novel chromosome design by recording the detailed information of access modes and subaisles. To demonstrate the merits of the proposed algorithm, a comprehensive simulation for comparison is conducted with 12 warehouse layouts with real order information. The simulation results show that the proposed hybrid algorithm is superior to dedicated heuristics in terms of solution quality. The impacts of the parameters with respect to warehouse layout on the picking efficiency are analyzed as well. Setting more connect aisles and cross aisles is suggested to effectively optimize the picking-service efficiency in the presence of access limitations.

Suggested Citation

  • Fangyu Chen & Gangyan Xu & Yongchang Wei, 2019. "An Integrated Metaheuristic Routing Method for Multiple-Block Warehouses with Ultranarrow Aisles and Access Restriction," Complexity, Hindawi, vol. 2019, pages 1-14, June.
  • Handle: RePEc:hin:complx:1280285
    DOI: 10.1155/2019/1280285
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1280285.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1280285.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1280285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pratik Parikh & Russell Meller, 2009. "Estimating picker blocking in wide-aisle order picking systems," IISE Transactions, Taylor & Francis Journals, vol. 41(3), pages 232-246.
    2. Grosse, E. H. & Glock, C. H. & Ballester-Ripoll, R., 2014. "A simulated annealing approach for the joint order batching and order picker routing problem with weight restrictions," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65331, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Chen, Tzu-Li & Cheng, Chen-Yang & Chen, Yin-Yann & Chan, Li-Kai, 2015. "An efficient hybrid algorithm for integrated order batching, sequencing and routing problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 158-167.
    4. Pan, Jason Chao-Hsien & Shih, Po-Hsun & Wu, Ming-Hung, 2015. "Order batching in a pick-and-pass warehousing system with group genetic algorithm," Omega, Elsevier, vol. 57(PB), pages 238-248.
    5. Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2012. "Batch picking in narrow-aisle order picking systems with consideration for picker blocking," European Journal of Operational Research, Elsevier, vol. 221(3), pages 557-570.
    6. Hao Guo & Congdong Li & Ying Zhang & Chunnan Zhang & Yu Wang, 2018. "A Nonlinear Integer Programming Model for Integrated Location, Inventory, and Routing Decisions in a Closed-Loop Supply Chain," Complexity, Hindawi, vol. 2018, pages 1-17, July.
    7. De Santis, Roberta & Montanari, Roberto & Vignali, Giuseppe & Bottani, Eleonora, 2018. "An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses," European Journal of Operational Research, Elsevier, vol. 267(1), pages 120-137.
    8. Zhang, Jun & Wang, Xuping & Huang, Kai, 2018. "On-line scheduling of order picking and delivery with multiple zones and limited vehicle capacity," Omega, Elsevier, vol. 79(C), pages 104-115.
    9. Valle, Cristiano Arbex & Beasley, John E. & da Cunha, Alexandre Salles, 2017. "Optimally solving the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 817-834.
    10. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    11. Jianbin Li & Rihuan Huang & James B. Dai, 2017. "Joint optimisation of order batching and picker routing in the online retailer’s warehouse in China," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 447-461, January.
    12. Matusiak, Marek & de Koster, René & Kroon, Leo & Saarinen, Jari, 2014. "A fast simulated annealing method for batching precedence-constrained customer orders in a warehouse," European Journal of Operational Research, Elsevier, vol. 236(3), pages 968-977.
    13. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    14. Scholz, André & Henn, Sebastian & Stuhlmann, Meike & Wäscher, Gerhard, 2016. "A new mathematical programming formulation for the Single-Picker Routing Problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 68-84.
    15. Chenxi Huang & Yisha Lan & Yuchen Liu & Wen Zhou & Hongbin Pei & Longzhi Yang & Yongqiang Cheng & Yongtao Hao & Yonghong Peng, 2018. "A New Dynamic Path Planning Approach for Unmanned Aerial Vehicles," Complexity, Hindawi, vol. 2018, pages 1-17, November.
    16. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    17. Parikh, Pratik J. & Meller, Russell D., 2010. "A travel-time model for a person-onboard order picking system," European Journal of Operational Research, Elsevier, vol. 200(2), pages 385-394, January.
    18. Fangyu Chen & Hongwei Wang & Yong Xie & Chao Qi, 2016. "An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 389-408, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose Alejandro Cano & Pablo Cortés & Jesús Muñuzuri & Alexander Correa-Espinal, 2023. "Solving the picker routing problem in multi-block high-level storage systems using metaheuristics," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 376-415, June.
    2. Hsien-Pin Hsu & Chia-Nan Wang & Thanh-Tuan Dang, 2022. "Simulation-Based Optimization Approaches for Dealing with Dual-Command Crane Scheduling Problem in Unit-Load Double-Deep AS/RS Considering Energy Consumption," Mathematics, MDPI, vol. 10(21), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    2. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    3. Ardjmand, Ehsan & Shakeri, Heman & Singh, Manjeet & Sanei Bajgiran, Omid, 2018. "Minimizing order picking makespan with multiple pickers in a wave picking warehouse," International Journal of Production Economics, Elsevier, vol. 206(C), pages 169-183.
    4. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    5. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    6. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    7. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    8. De Santis, Roberta & Montanari, Roberto & Vignali, Giuseppe & Bottani, Eleonora, 2018. "An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses," European Journal of Operational Research, Elsevier, vol. 267(1), pages 120-137.
    9. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris, 2019. "Formulating and solving the integrated batching, routing, and picker scheduling problem in a real-life spare parts warehouse," European Journal of Operational Research, Elsevier, vol. 277(3), pages 814-830.
    10. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    11. Jose Alejandro Cano & Pablo Cortés & Jesús Muñuzuri & Alexander Correa-Espinal, 2023. "Solving the picker routing problem in multi-block high-level storage systems using metaheuristics," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 376-415, June.
    12. Žulj, Ivan & Kramer, Sergej & Schneider, Michael, 2018. "A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 653-664.
    13. André Scholz & Daniel Schubert & Gerhard Wäscher, 2016. "Order picking with multiple pickers and due dates – Simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems," FEMM Working Papers 160005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    14. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    15. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    16. Valle, Cristiano Arbex & Beasley, John E. & da Cunha, Alexandre Salles, 2017. "Optimally solving the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 817-834.
    17. Rajabighamchi, Farzaneh & van Hoesel, Stan & Defryn, Christof, 2023. "Graph reduction for the planar Travelling Salesman Problem," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
    18. Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
    19. Scholz, André & Schubert, Daniel & Wäscher, Gerhard, 2017. "Order picking with multiple pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing, and Picker Routing Problems," European Journal of Operational Research, Elsevier, vol. 263(2), pages 461-478.
    20. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1280285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.