IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v263y2017i3p789-804.html
   My bibliography  Save this article

Adaptive Kernel Search: A heuristic for solving Mixed Integer linear Programs

Author

Listed:
  • Guastaroba, G.
  • Savelsbergh, M.
  • Speranza, M.G.

Abstract

We introduce Adaptive Kernel Search (AKS), a heuristic framework for the solution of (general) Mixed Integer linear Programs (MIPs). AKS extends and enhances Kernel Search, a heuristic framework that has been shown to produce high-quality solutions for a number of specific (combinatorial) optimization problems in a short amount of time. AKS solves a sequence of carefully constructed restricted MIPs (using a commercial MIP solver). The computational effort required to solve the first restricted MIP guides the construction of the subsequent MIPs. The restricted MIPs are constructed around a kernel, which contains the variables that are presumably non-zero in an optimal solution. Computational results, for a set of 137 instances, show that AKS significantly outperforms other state-of-the-art heuristics for solving MIPs. AKS also compares favorably to CPLEX and offers more flexibility to trade-off solution quality and computing time.

Suggested Citation

  • Guastaroba, G. & Savelsbergh, M. & Speranza, M.G., 2017. "Adaptive Kernel Search: A heuristic for solving Mixed Integer linear Programs," European Journal of Operational Research, Elsevier, vol. 263(3), pages 789-804.
  • Handle: RePEc:eee:ejores:v:263:y:2017:i:3:p:789-804
    DOI: 10.1016/j.ejor.2017.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717305234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward Rothberg, 2007. "An Evolutionary Algorithm for Polishing Mixed Integer Programming Solutions," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 534-541, November.
    2. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    3. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2013. "A new class of functions for measuring solution integrality in the Feasibility Pump approach: Complete Results," DIAG Technical Reports 2013-05, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. Lokketangen, Arne & Glover, Fred, 1998. "Solving zero-one mixed integer programming problems using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 624-658, April.
    5. Guastaroba, G. & Speranza, M.G., 2014. "A heuristic for BILP problems: The Single Source Capacitated Facility Location Problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 438-450.
    6. Egon Balas & Sebastián Ceria & Milind Dawande & Francois Margot & Gábor Pataki, 2001. "Octane: A New Heuristic for Pure 0--1 Programs," Operations Research, INFORMS, vol. 49(2), pages 207-225, April.
    7. Enrico Angelelli & Renata Mansini & M. Speranza, 2012. "Kernel Search: a new heuristic framework for portfolio selection," Computational Optimization and Applications, Springer, vol. 51(1), pages 345-361, January.
    8. Guastaroba, G. & Speranza, M.G., 2012. "Kernel Search: An application to the index tracking problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 54-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mancini, Simona & Triki, Chefi & Piya, Sujan, 2022. "Optimal selection of touristic packages based on user preferences during sports mega-events," European Journal of Operational Research, Elsevier, vol. 302(3), pages 819-830.
    2. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    3. Kirschstein, Thomas & Meisel, Frank, 2019. "A multi-period multi-commodity lot-sizing problem with supplier selection, storage selection and discounts for the process industry," European Journal of Operational Research, Elsevier, vol. 279(2), pages 393-406.
    4. Navratil, Robert & Taylor, Stephen & Vecer, Jan, 2022. "On the utility maximization of the discrepancy between a perceived and market implied risk neutral distribution," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1215-1229.
    5. Carvalho, Desiree M. & Nascimento, Mariá C.V., 2022. "Hybrid matheuristics to solve the integrated lot sizing and scheduling problem on parallel machines with sequence-dependent and non-triangular setup," European Journal of Operational Research, Elsevier, vol. 296(1), pages 158-173.
    6. Kinene, Alan & Birolini, Sebastian & Cattaneo, Mattia & Granberg, Tobias Andersson, 2023. "Electric aircraft charging network design for regional routes: A novel mathematical formulation and kernel search heuristic," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1300-1315.
    7. Lamanna, Leonardo & Mansini, Renata & Zanotti, Roberto, 2022. "A two-phase kernel search variant for the multidimensional multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 53-65.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mancini, Simona & Triki, Chefi & Piya, Sujan, 2022. "Optimal selection of touristic packages based on user preferences during sports mega-events," European Journal of Operational Research, Elsevier, vol. 302(3), pages 819-830.
    2. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    3. Tran, Trung Hieu & Nagy, Gábor & Nguyen, Thu Ba T. & Wassan, Niaz A., 2018. "An efficient heuristic algorithm for the alternative-fuel station location problem," European Journal of Operational Research, Elsevier, vol. 269(1), pages 159-170.
    4. Kinene, Alan & Birolini, Sebastian & Cattaneo, Mattia & Granberg, Tobias Andersson, 2023. "Electric aircraft charging network design for regional routes: A novel mathematical formulation and kernel search heuristic," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1300-1315.
    5. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2011. "A new class of functions for measuring solution integrality in the Feasibility Pump approach," DIS Technical Reports 2011-08, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    6. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    7. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2013. "A new class of functions for measuring solution integrality in the Feasibility Pump approach: Complete Results," DIAG Technical Reports 2013-05, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    8. Strub, O. & Baumann, P., 2018. "Optimal construction and rebalancing of index-tracking portfolios," European Journal of Operational Research, Elsevier, vol. 264(1), pages 370-387.
    9. Gnägi, M. & Strub, O., 2020. "Tracking and outperforming large stock-market indices," Omega, Elsevier, vol. 90(C).
    10. Tingting Yang & Xiaoxia Huang, 2022. "A New Portfolio Optimization Model Under Tracking-Error Constraint with Linear Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 723-747, November.
    11. Lluís-Miquel Munguía & Shabbir Ahmed & David A. Bader & George L. Nemhauser & Yufen Shao, 2018. "Alternating criteria search: a parallel large neighborhood search algorithm for mixed integer programs," Computational Optimization and Applications, Springer, vol. 69(1), pages 1-24, January.
    12. Li, Helong & Huang, Qin & Wu, Baiyi, 2021. "Improving the naive diversification: An enhanced indexation approach," Finance Research Letters, Elsevier, vol. 39(C).
    13. Sant’Anna, Leonardo Riegel & Caldeira, João Frois & Filomena, Tiago Pascoal, 2020. "Lasso-based index tracking and statistical arbitrage long-short strategies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    14. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2010. "Feasibility Pump-Like Heuristics for Mixed Integer Problems," DIS Technical Reports 2010-15, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    15. Li, Xuepeng & Xu, Fengmin & Jing, Kui, 2022. "Robust enhanced indexation with ESG: An empirical study in the Chinese Stock Market," Economic Modelling, Elsevier, vol. 107(C).
    16. Sant’Anna, Leonardo R. & Filomena, Tiago P. & Caldeira, João F., 2017. "Index tracking and enhanced indexing using cointegration and correlation with endogenous portfolio selection," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 146-157.
    17. Huang, Jinbo & Li, Yong & Yao, Haixiang, 2022. "Partial moments and indexation investment strategies," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 39-59.
    18. Patrizia Beraldi & Antonio Violi & Massimiliano Ferrara & Claudio Ciancio & Bruno Antonio Pansera, 2021. "Dealing with complex transaction costs in portfolio management," Annals of Operations Research, Springer, vol. 299(1), pages 7-22, April.
    19. Li, Zhaojin & Liu, Ya & Yang, Zhen, 2021. "An effective kernel search and dynamic programming hybrid heuristic for a multimodal transportation planning problem with order consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    20. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2021. "On single-source capacitated facility location with cost and fairness objectives," European Journal of Operational Research, Elsevier, vol. 289(3), pages 959-974.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:263:y:2017:i:3:p:789-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.