IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v258y2017i2p512-524.html
   My bibliography  Save this article

When do changes in consumer preferences make forecasts from choice-based conjoint models unreliable?

Author

Listed:
  • Meeran, Sheik
  • Jahanbin, Semco
  • Goodwin, Paul
  • Quariguasi Frota Neto, Joao

Abstract

Forecasting the sales or market share of new products is a major challenge as there is little or no sales history with which to estimate levels and trends. Choice-based conjoint (CBC) is one of the most common approaches used to forecast new products’ sales. However, the accuracy of forecasts based on CBC models may be reduced when consumers’ preferences for the attributes of products are labile. Despite this, there is a lack of research on the extent to which lability can impair accuracy when the coefficients estimated in CBC models are assumed to be constant over time. This paper aims to address this research gap by investigating the prevalence of lability for consumer durable products and its potential impact on the accuracy of forecasts. There are reasons to expect that lability may be particularly evident where a product is subject to rapid technological change and has a short product life-cycle. We carried out a longitudinal survey of the preferences of 161 potential consumers relating to four different types of products. We established that for both functional and innovative products: (i) the CBC models vary significantly over time, indicating changes in consumer preferences and (ii) such changes may cause large differences in forecasts of the probabilities that consumers will purchase particular brands of products. Hence employing models where coefficients do not change over time can potentially lead to inaccurate market share forecasts for high-tech, short life-cycle products that are launched even a short time after the choice-based modelling has been conducted.

Suggested Citation

  • Meeran, Sheik & Jahanbin, Semco & Goodwin, Paul & Quariguasi Frota Neto, Joao, 2017. "When do changes in consumer preferences make forecasts from choice-based conjoint models unreliable?," European Journal of Operational Research, Elsevier, vol. 258(2), pages 512-524.
  • Handle: RePEc:eee:ejores:v:258:y:2017:i:2:p:512-524
    DOI: 10.1016/j.ejor.2016.08.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716306865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.08.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    2. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    3. V. Kumar & Trichy V. Krishnan, 2002. "Multinational Diffusion Models: An Alternative Framework," Marketing Science, INFORMS, vol. 21(3), pages 318-330, July.
    4. Pollak, Robert A, 1978. "Endogenous Tastes in Demand and Welfare Analysis," American Economic Review, American Economic Association, vol. 68(2), pages 374-379, May.
    5. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    6. Ozer, Muammer, 2011. "Understanding the impacts of product knowledge and product type on the accuracy of intentions-based new product predictions," European Journal of Operational Research, Elsevier, vol. 211(2), pages 359-369, June.
    7. Dhar, Ravi, 1997. "Consumer Preference for a No-Choice Option," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 24(2), pages 215-231, September.
    8. Hansen, Eric R., 1987. "Industrial location choice in Sao Paulo, Brazil : A nested logit model," Regional Science and Urban Economics, Elsevier, vol. 17(1), pages 89-108, February.
    9. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    10. Karniouchina, Ekaterina V. & Moore, William L. & van der Rhee, Bo & Verma, Rohit, 2009. "Issues in the use of ratings-based versus choice-based conjoint analysis in operations management research," European Journal of Operational Research, Elsevier, vol. 197(1), pages 340-348, August.
    11. Bettman, James R & Luce, Mary Frances & Payne, John W, 1998. "Constructive Consumer Choice Processes," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 25(3), pages 187-217, December.
    12. Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
    13. Park, C Whan & Lessig, V Parker, 1981. "Familiarity and Its Impact on Consumer Decision Biases and Heuristics," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 8(2), pages 223-230, September.
    14. Halme, Merja & Kallio, Markku, 2014. "Likelihood estimation of consumer preferences in choice-based conjoint analysis," European Journal of Operational Research, Elsevier, vol. 239(2), pages 556-564.
    15. Coupey, Eloise & Irwin, Julie R & Payne, John W, 1998. "Product Category Familiarity and Preference Construction," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 24(4), pages 459-468, March.
    16. Chiu, Hung-Chang & Hsieh, Yi-Ching & Li, Yu-Chuan & Lee, Monle, 2005. "Relationship marketing and consumer switching behavior," Journal of Business Research, Elsevier, vol. 58(12), pages 1681-1689, December.
    17. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    18. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    19. Halme, Merja & Kallio, Markku, 2011. "Estimation methods for choice-based conjoint analysis of consumer preferences," European Journal of Operational Research, Elsevier, vol. 214(1), pages 160-167, October.
    20. Jun, Duk B. & Kim, Seon K. & Park, Yoon S. & Park, Myoung H. & Wilson, Amy R., 2002. "Forecasting telecommunication service subscribers in substitutive and competitive environments," International Journal of Forecasting, Elsevier, vol. 18(4), pages 561-581.
    21. Abbas A. Kurawarwala & Hirofumi Matsuo, 1996. "Forecasting and Inventory Management of Short Life-Cycle Products," Operations Research, INFORMS, vol. 44(1), pages 131-150, February.
    22. Richard Alm & W. Michael Cox, 1998. "The right stuff: America's move to mass customization," Annual Report, Federal Reserve Bank of Dallas, pages 3-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliveira, Gabriela D. & Roth, Richard & Dias, Luis C., 2019. "Diffusion of alternative fuel vehicles considering dynamic preferences," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 83-99.
    2. Katharina Keller & Christian Schlereth & Oliver Hinz, 2021. "Sample-based longitudinal discrete choice experiments: preferences for electric vehicles over time," Journal of the Academy of Marketing Science, Springer, vol. 49(3), pages 482-500, May.
    3. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    4. Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
    7. Gelmar García-Vidal & Alexander Sánchez-Rodríguez & Reyner Pérez-Campdesuñer & Rodobaldo Martínez-Vivar, 2019. "Consumer Preferences for Local Chocolate Consumption. Implications from Market Segmentation at Ecuador," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 9(4), pages 1-12, April.
    8. Gelmar García-Vidal & Alexander Sánchez-Rodríguez & Reyner Pérez-Campdesuñer & Rodobaldo Martínez-Vivar, 2019. "Consumer Preferences for Local Chocolate Consumption. Implications from Market Segmentation at Ecuador," International Journal of Business and Social Research, LAR Center Press, vol. 9(4), pages 1-12, April.
    9. Schlereth, Christian & Skiera, Bernd & Schulz, Fabian, 2018. "Why do consumers prefer static instead of dynamic pricing plans? An empirical study for a better understanding of the low preferences for time-variant pricing plans," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1165-1179.
    10. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    2. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    3. Shao, Wei & Lye, Ashley & Rundle-Thiele, Sharyn, 2009. "Different strokes for different folks: A method to accommodate decision -making heterogeneity," Journal of Retailing and Consumer Services, Elsevier, vol. 16(6), pages 495-501.
    4. Duan, Hong-Bo & Zhu, Lei & Fan, Ying, 2014. "A cross-country study on the relationship between diffusion of wind and photovoltaic solar technology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 156-169.
    5. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    6. Heiman, Amir & Lowengart, Oded, 2011. "The effects of information about health hazards in food on consumers' choice process," Journal of Econometrics, Elsevier, vol. 162(1), pages 140-147, May.
    7. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    8. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    9. Wang, Juite & Lai, Jung-Yu & Chang, Chih-Hsin, 2016. "Modeling and analysis for mobile application services: The perspective of mobile network operators," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 146-163.
    10. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2021. "Predicting diffusion dynamics and launch time strategy for mobile telecommunication services: an empirical analysis," Information Technology and Management, Springer, vol. 22(1), pages 33-51, March.
    11. Michel Wedel & Rik Pieters & Ralf Lans, 2023. "Modeling Eye Movements During Decision Making: A Review," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 697-729, June.
    12. Maldonado, Sebastián & Montoya, Ricardo & Weber, Richard, 2015. "Advanced conjoint analysis using feature selection via support vector machines," European Journal of Operational Research, Elsevier, vol. 241(2), pages 564-574.
    13. Pradeep K. Chintagunta & Harikesh S. Nair, 2011. "Structural Workshop Paper --Discrete-Choice Models of Consumer Demand in Marketing," Marketing Science, INFORMS, vol. 30(6), pages 977-996, November.
    14. Timothy J. Gilbride & Greg M. Allenby, 2006. "Estimating Heterogeneous EBA and Economic Screening Rule Choice Models," Marketing Science, INFORMS, vol. 25(5), pages 494-509, September.
    15. Piccoli, Gabriele & Lui, Tsz-Wai & Grün, Bettina, 2017. "The impact of IT-enabled customer service systems on service personalization, customer service perceptions, and hotel performance," Tourism Management, Elsevier, vol. 59(C), pages 349-362.
    16. Katharina Keller & Christian Schlereth & Oliver Hinz, 2021. "Sample-based longitudinal discrete choice experiments: preferences for electric vehicles over time," Journal of the Academy of Marketing Science, Springer, vol. 49(3), pages 482-500, May.
    17. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    18. Hein, Maren & Goeken, Nils & Kurz, Peter & Steiner, Winfried J., 2022. "Using Hierarchical Bayes draws for improving shares of choice predictions in conjoint simulations: A study based on conjoint choice data," European Journal of Operational Research, Elsevier, vol. 297(2), pages 630-651.
    19. Peter Stüttgen & Peter Boatwright & Robert T. Monroe, 2012. "A Satisficing Choice Model," Marketing Science, INFORMS, vol. 31(6), pages 878-899, November.
    20. Mark Heitmann & Andreas Herrmann & Christian Kaiser, 2007. "The effect of product variety on purchase probability," Review of Managerial Science, Springer, vol. 1(2), pages 111-131, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:258:y:2017:i:2:p:512-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.