IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v252y2016i1p183-190.html
   My bibliography  Save this article

A practical finite difference method for the three-dimensional Black–Scholes equation

Author

Listed:
  • Kim, Junseok
  • Kim, Taekkeun
  • Jo, Jaehyun
  • Choi, Yongho
  • Lee, Seunggyu
  • Hwang, Hyeongseok
  • Yoo, Minhyun
  • Jeong, Darae

Abstract

In this paper, we develop a fast and accurate numerical method for pricing of the three-asset equity-linked securities options. The option pricing model is based on the Black–Scholes partial differential equation. The model is discretized by using a non-uniform finite difference method and the resulting discrete equations are solved by using an operator splitting method. For fast and accurate calculation, we put more grid points near the singularity of the nonsmooth payoff function. To demonstrate the accuracy and efficiency of the proposed numerical method, we compare the results of the method with those from Monte Carlo simulation in terms of computational cost and accuracy. The numerical results show that the cost of the proposed method is comparable to that of the Monte Carlo simulation and it provides more stable hedging parameters such as the Greeks.

Suggested Citation

  • Kim, Junseok & Kim, Taekkeun & Jo, Jaehyun & Choi, Yongho & Lee, Seunggyu & Hwang, Hyeongseok & Yoo, Minhyun & Jeong, Darae, 2016. "A practical finite difference method for the three-dimensional Black–Scholes equation," European Journal of Operational Research, Elsevier, vol. 252(1), pages 183-190.
  • Handle: RePEc:eee:ejores:v:252:y:2016:i:1:p:183-190
    DOI: 10.1016/j.ejor.2015.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715011212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pun, Chi Seng & Chung, Shing Fung & Wong, Hoi Ying, 2015. "Variance swap with mean reversion, multifactor stochastic volatility and jumps," European Journal of Operational Research, Elsevier, vol. 245(2), pages 571-580.
    2. Yongsik Kim & Hyeong-Ohk Bae & Hyeng Keun Koo, 2014. "Option pricing and Greeks via a moving least square meshfree method," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1753-1764, October.
    3. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    4. Bandi, Chaithanya & Bertsimas, Dimitris, 2014. "Robust option pricing," European Journal of Operational Research, Elsevier, vol. 239(3), pages 842-853.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Rambeerich, N. & Tangman, D.Y. & Lollchund, M.R. & Bhuruth, M., 2013. "High-order computational methods for option valuation under multifactor models," European Journal of Operational Research, Elsevier, vol. 224(1), pages 219-226.
    7. Marroquı´n-Martı´nez, Naroa & Moreno, Manuel, 2013. "Optimizing bounds on security prices in incomplete markets. Does stochastic volatility specification matter?," European Journal of Operational Research, Elsevier, vol. 225(3), pages 429-442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jian & Wen, Shuai & Yang, Mengdie & Shao, Wei, 2022. "Practical finite difference method for solving multi-dimensional black-Scholes model in fractal market," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Wang, Jian & Yan, Yan & Chen, Wenbing & Shao, Wei & Wang, Jian & Tang, Weiwei, 2021. "Equity-linked securities option pricing by fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Panumart Sawangtong & Kamonchat Trachoo & Wannika Sawangtong & Benchawan Wiwattanapataphee, 2018. "The Analytical Solution for the Black-Scholes Equation with Two Assets in the Liouville-Caputo Fractional Derivative Sense," Mathematics, MDPI, vol. 6(8), pages 1-14, July.
    4. Jang Hanbyeol & Wang Jian & Kim Junseok, 2019. "Equity-linked security pricing and Greeks at arbitrary intermediate times using Brownian bridge," Monte Carlo Methods and Applications, De Gruyter, vol. 25(4), pages 291-305, December.
    5. Lyu, Jisang & Park, Eunchae & Kim, Sangkwon & Lee, Wonjin & Lee, Chaeyoung & Yoon, Sungha & Park, Jintae & Kim, Junseok, 2021. "Optimal non-uniform finite difference grids for the Black–Scholes equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 690-704.
    6. Černá, Dana & Fiňková, Kateřina, 2024. "Option pricing under multifactor Black–Scholes model using orthogonal spline wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 309-340.
    7. Cho, Junhyun & Kim, Yejin & Lee, Sungchul, 2022. "An accurate and stable numerical method for option hedge parameters," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    8. Chaeyoung Lee & Jisang Lyu & Eunchae Park & Wonjin Lee & Sangkwon Kim & Darae Jeong & Junseok Kim, 2020. "Super-Fast Computation for the Three-Asset Equity-Linked Securities Using the Finite Difference Method," Mathematics, MDPI, vol. 8(3), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.
    2. Chiu, Mei Choi & Wong, Hoi Ying & Zhao, Jing, 2015. "Commodity derivatives pricing with cointegration and stochastic covariances," European Journal of Operational Research, Elsevier, vol. 246(2), pages 476-486.
    3. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    4. Saeed Marzban & Erick Delage & Jonathan Yumeng Li, 2020. "Equal Risk Pricing and Hedging of Financial Derivatives with Convex Risk Measures," Papers 2002.02876, arXiv.org, revised Sep 2020.
    5. Maria Cristina Recchioni & Yu Sun & Gabriele Tedeschi, 2017. "Can negative interest rates really affect option pricing? Empirical evidence from an explicitly solvable stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1257-1275, August.
    6. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    7. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    8. Pingjin Deng & Xiufang Li, 2017. "Barrier Options Pricing With Joint Distribution Of Gaussian Process And Its Maximum," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-18, September.
    9. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    10. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.
    11. Marianito R. Rodrigo, 2020. "Pricing of Barrier Options on Underlying Assets with Jump-Diffusion Dynamics: A Mellin Transform Approach," Mathematics, MDPI, vol. 8(8), pages 1-20, August.
    12. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    13. Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
    14. Tian-Shyr Dai & Chun-Yuan Chiu, 2013. "Pricing barrier stock options with discrete dividends by approximating analytical formulae," Quantitative Finance, Taylor & Francis Journals, vol. 14(8), pages 1367-1382, October.
    15. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    16. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    17. Hongshan Li & Zhongyi Huang, 2019. "Artificial boundary method for the solution of pricing European options under the Heston model," Papers 1912.00691, arXiv.org.
    18. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    19. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    20. Ghafarian, Bahareh & Hanafizadeh, Payam & Qahi, Amir Hossein Mortazavi, 2018. "Applying Greek letters to robust option price modeling by binomial-tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 632-639.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:252:y:2016:i:1:p:183-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.