IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v157y2022ics0960077922001060.html
   My bibliography  Save this article

Practical finite difference method for solving multi-dimensional black-Scholes model in fractal market

Author

Listed:
  • Wang, Jian
  • Wen, Shuai
  • Yang, Mengdie
  • Shao, Wei

Abstract

In this paper, we employ a practical finite difference method to research the multi-dimensional fractional Balck-Scholes model under one asset and three assets. In the case of one asset, we establish explicit scheme and Crank-Nicolson scheme to study the effect of different Hurst exponent (H) on numerical results and Greeks. With the increase of H, the numerical figures of the finite difference scheme also change. In addition, we also verify the effectiveness of Crank-Nicolson scheme in numerical solution of Greeks. We observe that when H=0.5, the results of Delta, Gamma and Theta are consistent with the accurate results. In the case of three assets, we use operator splitting method (OSM) and establish semi-implicit scheme. We hold that H will affect the numerical results and Greeks results in fractional Black-Scholes model. If the effect of H is not considered in option hedging, the result will deviate greatly from the actual result.

Suggested Citation

  • Wang, Jian & Wen, Shuai & Yang, Mengdie & Shao, Wei, 2022. "Practical finite difference method for solving multi-dimensional black-Scholes model in fractal market," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001060
    DOI: 10.1016/j.chaos.2022.111895
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922001060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Junseok & Kim, Taekkeun & Jo, Jaehyun & Choi, Yongho & Lee, Seunggyu & Hwang, Hyeongseok & Yoo, Minhyun & Jeong, Darae, 2016. "A practical finite difference method for the three-dimensional Black–Scholes equation," European Journal of Operational Research, Elsevier, vol. 252(1), pages 183-190.
    2. Wang, Jian & Yan, Yan & Chen, Wenbing & Shao, Wei & Wang, Jian & Tang, Weiwei, 2021. "Equity-linked securities option pricing by fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Kim, Sangkwon & Kim, Junseok, 2021. "Robust and accurate construction of the local volatility surface using the Black–Scholes equation," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xi-Li & Wang, Ying-Luo, 2010. "Pricing currency options in a fractional Brownian motion with jumps," Economic Modelling, Elsevier, vol. 27(5), pages 935-942, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Tao & Soleymani, Fazlollah & Ullah, Malik Zaka, 2024. "Solving multi-dimensional European option pricing problems by integrals of the inverse quadratic radial basis function on non-uniform meshes," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    2. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Shoaib, Muhammad & Kiani, Adiqa Kausar, 2022. "Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soobin Kwak & Youngjin Hwang & Yongho Choi & Jian Wang & Sangkwon Kim & Junseok Kim, 2022. "Reconstructing the Local Volatility Surface from Market Option Prices," Mathematics, MDPI, vol. 10(14), pages 1-12, July.
    2. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    3. Dammak, Wael & Hamad, Salah Ben & de Peretti, Christian & Eleuch, Hichem, 2023. "Pricing of European currency options considering the dynamic information costs," Global Finance Journal, Elsevier, vol. 58(C).
    4. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    5. Kim, Kyong-Hui & Yun, Sim & Kim, Nam-Ung & Ri, Ju-Hyuang, 2019. "Pricing formula for European currency option and exchange option in a generalized jump mixed fractional Brownian motion with time-varying coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 215-231.
    6. Wang, Jian & Yan, Yan & Chen, Wenbing & Shao, Wei & Wang, Jian & Tang, Weiwei, 2021. "Equity-linked securities option pricing by fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Panumart Sawangtong & Kamonchat Trachoo & Wannika Sawangtong & Benchawan Wiwattanapataphee, 2018. "The Analytical Solution for the Black-Scholes Equation with Two Assets in the Liouville-Caputo Fractional Derivative Sense," Mathematics, MDPI, vol. 6(8), pages 1-14, July.
    8. Cho, Junhyun & Kim, Yejin & Lee, Sungchul, 2022. "An accurate and stable numerical method for option hedge parameters," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    9. Chaeyoung Lee & Soobin Kwak & Youngjin Hwang & Junseok Kim, 2023. "Accurate and Efficient Finite Difference Method for the Black–Scholes Model with No Far-Field Boundary Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1207-1224, March.
    10. Zhaoqiang Yang, 2017. "Efficient valuation and exercise boundary of American fractional lookback option in a mixed jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-29, June.
    11. Xu, Weijun & Liu, Guifang & Li, Hongyi, 2016. "A novel jump diffusion model based on SGT distribution and its applications," Economic Modelling, Elsevier, vol. 59(C), pages 74-92.
    12. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    13. Černá, Dana & Fiňková, Kateřina, 2024. "Option pricing under multifactor Black–Scholes model using orthogonal spline wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 309-340.
    14. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    15. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    16. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    17. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    18. Filipe Fontanela & Antoine Jacquier & Mugad Oumgari, 2019. "A Quantum algorithm for linear PDEs arising in Finance," Papers 1912.02753, arXiv.org, revised Feb 2021.
    19. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    20. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.