IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v251y2016i1p44-52.html
   My bibliography  Save this article

A hybrid heuristic approach for the multi-commodity pickup-and-delivery traveling salesman problem

Author

Listed:
  • Hernández-Pérez, Hipólito
  • Rodríguez-Martín, Inmaculada
  • Salazar-González, Juan-José

Abstract

We address in this article the multi-commodity pickup-and-delivery traveling salesman problem, which is a routing problem for a capacitated vehicle that has to serve a set of customers that provide or require certain amounts of m different products. Each customer must be visited exactly once by the vehicle, and it is assumed that a unit of a product collected from a customer can be supplied to any other customer that requires that product. Each product is allowed to have several sources and several destinations. The objective is to minimize the total travel distance. We propose a hybrid three-stage heuristic approach that combines a procedure to generate initial solutions with several local search operators and shaking procedures, one of them based on solving an integer programming model. Extensive computational experiments on randomly generated instances with up to 400 locations and 5 products show the effectiveness of the approach.

Suggested Citation

  • Hernández-Pérez, Hipólito & Rodríguez-Martín, Inmaculada & Salazar-González, Juan-José, 2016. "A hybrid heuristic approach for the multi-commodity pickup-and-delivery traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 251(1), pages 44-52.
  • Handle: RePEc:eee:ejores:v:251:y:2016:i:1:p:44-52
    DOI: 10.1016/j.ejor.2015.10.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715009790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.10.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghiani, Gianpaolo & Improta, Gennaro, 2000. "An efficient transformation of the generalized vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 122(1), pages 11-17, April.
    2. Nowak, Maciek & Ergun, Ozlem & White III, Chelsea C., 2009. "An empirical study on the benefit of split loads with the pickup and delivery problem," European Journal of Operational Research, Elsevier, vol. 198(3), pages 734-740, November.
    3. Mladenović, Nenad & Urošević, Dragan & Hanafi, Saı¨d & Ilić, Aleksandar, 2012. "A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 220(1), pages 270-285.
    4. Mosheiov, Gur, 1994. "The Travelling Salesman Problem with pick-up and delivery," European Journal of Operational Research, Elsevier, vol. 79(2), pages 299-310, December.
    5. Guastaroba, G. & Speranza, M.G., 2012. "Kernel Search: An application to the index tracking problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 54-68.
    6. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    7. Psaraftis, Harilaos N., 1983. "k-Interchange procedures for local search in a precedence-constrained routing problem," European Journal of Operational Research, Elsevier, vol. 13(4), pages 391-402, August.
    8. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1997. "A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem," Operations Research, INFORMS, vol. 45(3), pages 378-394, June.
    9. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    10. Psaraftis, Harilaos N., 2011. "A multi-commodity, capacitated pickup and delivery problem: The single and two-vehicle cases," European Journal of Operational Research, Elsevier, vol. 215(3), pages 572-580, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chongshou & Gong, Lijun & Luo, Zhixing & Lim, Andrew, 2019. "A branch-and-price-and-cut algorithm for a pickup and delivery problem in retailing," Omega, Elsevier, vol. 89(C), pages 71-91.
    2. Xu, Dongyang & Li, Kunpeng & Zou, Xuxia & Liu, Ling, 2017. "An unpaired pickup and delivery vehicle routing problem with multi-visit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 218-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qingfeng & Li, Kunpeng & Liu, Zhixue, 2014. "Model and algorithm for an unpaired pickup and delivery vehicle routing problem with split loads," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 218-235.
    2. Gábor Nagy & Niaz A. Wassan & M. Grazia Speranza & Claudia Archetti, 2015. "The Vehicle Routing Problem with Divisible Deliveries and Pickups," Transportation Science, INFORMS, vol. 49(2), pages 271-294, May.
    3. Benjamin Biesinger & Bin Hu & Günther R. Raidl, 2018. "A Genetic Algorithm in Combination with a Solution Archive for Solving the Generalized Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 52(3), pages 673-690, June.
    4. Timo Hintsch, 2019. "Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing Problem," Working Papers 1904, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Pop, Petrică C., 2020. "The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances," European Journal of Operational Research, Elsevier, vol. 283(1), pages 1-15.
    6. Pop, Petrică C. & Cosma, Ovidiu & Sabo, Cosmin & Sitar, Corina Pop, 2024. "A comprehensive survey on the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 819-835.
    7. Lamb, John D., 2012. "Variable neighbourhood structures for cycle location problems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 15-26.
    8. Dell’Amico, Mauro & Iori, Manuel & Novellani, Stefano & Subramanian, Anand, 2018. "The Bike sharing Rebalancing Problem with Stochastic Demands," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 362-380.
    9. T-S Chang & Y-F Liao, 2011. "Routing strategies for integrating forward distribution and reverse collection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 971-981, June.
    10. Hintsch, Timo & Irnich, Stefan, 2018. "Large multiple neighborhood search for the clustered vehicle-routing problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 118-131.
    11. Bolor Jargalsaikhan & Ward Romeijnders & Kees Jan Roodbergen, 2021. "A Compact Arc-Based ILP Formulation for the Pickup and Delivery Problem with Divisible Pickups and Deliveries," Transportation Science, INFORMS, vol. 55(2), pages 336-352, March.
    12. I Gribkovskaia & G Laporte & A Shlopak, 2008. "A tabu search heuristic for a routing problem arising in servicing of offshore oil and gas platforms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1449-1459, November.
    13. Niaz A. Wassan & A. Hameed Wassan & Gábor Nagy, 2008. "A reactive tabu search algorithm for the vehicle routing problem with simultaneous pickups and deliveries," Journal of Combinatorial Optimization, Springer, vol. 15(4), pages 368-386, May.
    14. Margaretha Gansterer & Murat Küçüktepe & Richard F. Hartl, 2017. "The multi-vehicle profitable pickup and delivery problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 303-319, January.
    15. Timo Hintsch & Stefan Irnich, 2017. "Large Multiple Neighborhood Search for the Clustered Vehicle-Routing Problem," Working Papers 1701, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Blum, Christian & Ochoa, Gabriela, 2021. "A comparative analysis of two matheuristics by means of merged local optima networks," European Journal of Operational Research, Elsevier, vol. 290(1), pages 36-56.
    17. Todosijević, Raca & Benmansour, Rachid & Hanafi, Saïd & Mladenović, Nenad & Artiba, Abdelhakim, 2016. "Nested general variable neighborhood search for the periodic maintenance problem," European Journal of Operational Research, Elsevier, vol. 252(2), pages 385-396.
    18. Salazar-González, Juan-José & Santos-Hernández, Beatriz, 2015. "The split-demand one-commodity pickup-and-delivery travelling salesman problem," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 58-73.
    19. Tolga Bektaş & Güneş Erdoğan & Stefan Røpke, 2011. "Formulations and Branch-and-Cut Algorithms for the Generalized Vehicle Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 299-316, August.
    20. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:251:y:2016:i:1:p:44-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.