IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v249y2016i3p1124-1130.html
   My bibliography  Save this article

Optimal policies of M(t)/M/c/c queues with two different levels of servers

Author

Listed:
  • Tirdad, Ali
  • Grassmann, Winfried K.
  • Tavakoli, Javad

Abstract

This paper deals with optimal control points of M(t)/M/c/c queues with periodic arrival rates and two levels of the number of servers. We use the results of this model to build a Markov decision process (MDP). The problem arose from a case study in the Kelowna General Hospital (KGH). The KGH uses surge beds when the emergency room is overcrowded which results in having two levels for the number of the beds. The objective is to minimize a cost function. The findings of this work are not limited to the healthcare; They may be used in any stochastic system with fluctuation in arrival rates and/or two levels of the number of servers, i.e., call centers, transportation, and internet services. We model the situation and define a cost function which needs to be minimized. In order to find the cost function we need transient solutions of the M(t)/M/c/c queue. We modify the fourth-order Runge–Kutta to calculate the transient solutions and we obtain better solutions than the existing Runge–Kutta method. We show that the periodic variation of arrival rates makes the control policies time-dependent and periodic. We also study how fast the policies converge to a periodic pattern and obtain a criterion for independence of policies in two sequential cycles.

Suggested Citation

  • Tirdad, Ali & Grassmann, Winfried K. & Tavakoli, Javad, 2016. "Optimal policies of M(t)/M/c/c queues with two different levels of servers," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1124-1130.
  • Handle: RePEc:eee:ejores:v:249:y:2016:i:3:p:1124-1130
    DOI: 10.1016/j.ejor.2015.10.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715009662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.10.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linda Green & Peter Kolesar, 1991. "The Pointwise Stationary Approximation for Queues with Nonstationary Arrivals," Management Science, INFORMS, vol. 37(1), pages 84-97, January.
    2. Matthew J. Sobel, 1969. "Optimal Average-Cost Policy for a Queue with Start-Up and Shut-Down Costs," Operations Research, INFORMS, vol. 17(1), pages 145-162, February.
    3. Y.C. Chang & W.L. Pearn, 2011. "Optimal management for infinite capacity -policy M/G/1 queue with a removable service station," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(7), pages 1075-1083.
    4. Linda Green & Peter Kolesar & Anthony Svoronos, 1991. "Some Effects of Nonstationarity on Multiserver Markovian Queueing Systems," Operations Research, INFORMS, vol. 39(3), pages 502-511, June.
    5. Zhe George Zhang, 2009. "Performance Analysis of a Queue with Congestion-Based Staffing Policy," Management Science, INFORMS, vol. 55(2), pages 240-251, February.
    6. Neuts, Marcel F. & Rao, B. M., 1992. "On the design of a finite-capacity queue with phase-type service times and hysteretic control," European Journal of Operational Research, Elsevier, vol. 62(2), pages 221-240, October.
    7. J. R. Artalejo & A. Economou, 2005. "Markovian Controllable Queueing Systems with Hysteretic Policies: Busy Period and Waiting Time Analysis," Methodology and Computing in Applied Probability, Springer, vol. 7(3), pages 353-378, September.
    8. Lotfi Tadj & Gautam Choudhury, 2005. "Optimal design and control of queues," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 359-412, December.
    9. Daniel P. Heyman, 1968. "Optimal Operating Policies for M / G /1 Queuing Systems," Operations Research, INFORMS, vol. 16(2), pages 362-382, April.
    10. Zhang, Zhe George & Tadj, Lotfi & Bounkhel, Messaoud, 2011. "Cost evaluation in M/G/1 queue with T-policy revisited, technical note," European Journal of Operational Research, Elsevier, vol. 214(3), pages 814-817, November.
    11. Colin E. Bell, 1971. "Characterization and Computation of Optimal Policies for Operating an M / G /1 Queuing System with Removable Server," Operations Research, INFORMS, vol. 19(1), pages 208-218, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    2. Dimitrakopoulos, Y. & Burnetas, A.N., 2016. "Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control," European Journal of Operational Research, Elsevier, vol. 252(2), pages 477-486.
    3. Morgan, Lucy E. & Barton, Russell R., 2022. "Fourier trajectory analysis for system discrimination," European Journal of Operational Research, Elsevier, vol. 296(1), pages 203-217.
    4. Narayanan C. Viswanath, 2022. "Transient study of Markov models with time-dependent transition rates," Operational Research, Springer, vol. 22(3), pages 2209-2243, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Li & Attahiru Sule Alfa, 2000. "Optimal policies for M/M/m queue with two different kinds of (N, T)‐policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(3), pages 240-258, April.
    2. Tayfur Altiok & Goang An Shiue, 1995. "Single‐stage, multi‐product production/inventory systems with lost sales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 889-913, September.
    3. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    4. Jim (Junmin) Shi & Michael N. Katehakis & Benjamin Melamed & Yusen Xia, 2014. "Production-Inventory Systems with Lost Sales and Compound Poisson Demands," Operations Research, INFORMS, vol. 62(5), pages 1048-1063, October.
    5. Dong-Yuh Yang & Po-Kai Chang, 2015. "A parametric programming solution to the -policy queue with fuzzy parameters," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(4), pages 590-598, March.
    6. Cigdem Gurgur, 2013. "Optimal configuration of a decentralized, market-driven production/inventory system," Annals of Operations Research, Springer, vol. 209(1), pages 139-157, October.
    7. Jau-Chuan Ke, 2006. "An M/G/1 queue under hysteretic vacation policy with an early startup and un-reliable server," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(2), pages 357-369, May.
    8. Boronico, Jess S. & Siegel, Philip H., 1998. "Capacity planning for toll roadways incorporating consumer wait time costs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(4), pages 297-310, May.
    9. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    10. Samantha L. Zimmerman & Alexander R. Rutherford & Alexa Waall & Monica Norena & Peter Dodek, 2023. "A queuing model for ventilator capacity management during the COVID-19 pandemic," Health Care Management Science, Springer, vol. 26(2), pages 200-216, June.
    11. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    12. Yue Zhang & Martin L. Puterman & Matthew Nelson & Derek Atkins, 2012. "A Simulation Optimization Approach to Long-Term Care Capacity Planning," Operations Research, INFORMS, vol. 60(2), pages 249-261, April.
    13. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    14. Yang, Feng & Liu, Jingang, 2012. "Simulation-based transfer function modeling for transient analysis of general queueing systems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 150-166.
    15. Zhe George Zhang & Hsing Paul Luh & Chia-Hung Wang, 2011. "Modeling Security-Check Queues," Management Science, INFORMS, vol. 57(11), pages 1979-1995, November.
    16. Zhang, Xuelu & Wang, Jinting & Do, Tien Van, 2015. "Threshold properties of the M/M/1 queue under T-policy with applications," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 284-301.
    17. Mouloud Cherfaoui & Aicha Bareche, 2020. "An optimal approximation of the characteristics of the GI/M/1 queue with two-stage service policy," Operational Research, Springer, vol. 20(2), pages 959-983, June.
    18. Izady, N. & Worthington, D., 2011. "Approximate analysis of non-stationary loss queues and networks of loss queues with general service time distributions," European Journal of Operational Research, Elsevier, vol. 213(3), pages 498-508, September.
    19. Erim Kardeş & Fernando Ordóñez & Randolph W. Hall, 2011. "Discounted Robust Stochastic Games and an Application to Queueing Control," Operations Research, INFORMS, vol. 59(2), pages 365-382, April.
    20. Carri W. Chan & Jing Dong & Linda V. Green, 2017. "Queues with Time-Varying Arrivals and Inspections with Applications to Hospital Discharge Policies," Operations Research, INFORMS, vol. 65(2), pages 469-495, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:249:y:2016:i:3:p:1124-1130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.