IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v42y2011i7p1075-1083.html
   My bibliography  Save this article

Optimal management for infinite capacity -policy M/G/1 queue with a removable service station

Author

Listed:
  • Y.C. Chang
  • W.L. Pearn

Abstract

In this article, we consider an infinite capacity N-policy M/G/1 queueing system with a single removable server. Poisson arrivals and general distribution service times are assumed. The server is controllable that may be turned on at arrival epochs or off at service completion epochs. We apply a differential technique to study system sensitivity, which examines the effect of different system input parameters on the system. A cost model for infinite capacity queueing system under steady-state condition is developed, to determine the optimal management policy at minimum cost. Analytical results for sensitivity analysis are derived. We also provide extensive numerical computations to illustrate the analytical sensitivity properties obtained. Finally, an application example is presented to demonstrate how the model could be used in real applications to obtain the optimal management policy.

Suggested Citation

  • Y.C. Chang & W.L. Pearn, 2011. "Optimal management for infinite capacity -policy M/G/1 queue with a removable service station," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(7), pages 1075-1083.
  • Handle: RePEc:taf:tsysxx:v:42:y:2011:i:7:p:1075-1083
    DOI: 10.1080/00207721.2011.570480
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2011.570480
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2011.570480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tirdad, Ali & Grassmann, Winfried K. & Tavakoli, Javad, 2016. "Optimal policies of M(t)/M/c/c queues with two different levels of servers," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1124-1130.
    2. Cheng-Dar Liou, 2015. "Markovian queue optimisation analysis with an unreliable server subject to working breakdowns and impatient customers," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(12), pages 2165-2182, September.
    3. Mu-Song Chen & Hao-Wei Yen, 2016. "A two-stage approach in solving the state probabilities of the multi-queue //1 model," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1230-1244, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:42:y:2011:i:7:p:1075-1083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.