IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v249y2016i1p258-269.html
   My bibliography  Save this article

Risk-based factorial probabilistic inference for optimization of flood control systems with correlated uncertainties

Author

Listed:
  • Wang, S.
  • Huang, G.H.

Abstract

In this paper, a risk-based factorial probabilistic inference method is proposed to address the stochastic objective function and constraints as well as their interactions in a systematic manner. To tackle random uncertainties, decision makers’ risk preferences are taken into account in the decision process. Statistical significance for each of the linear, nonlinear, and interaction effects of risk parameters is uncovered through conducting a multi-factorial analysis. The proposed methodology is applied to a case study of flood control to demonstrate its validity and applicability. A number of decision alternatives are obtained under various combinations of risk levels associated with the objective function and chance constraints, facilitating an in-depth analysis of trade-offs between economic outcomes and associated risks. Dynamic complexities are addressed through a two-stage decision process as well as through capacity expansion planning for flood diversion within a multi-region, multi-flood-level, and multi-option context. Findings from the factorial experiment reveal the multi-level interactions between risk parameters and quantify their contributions to the variability of the total system cost. The proposed method is compared against the fractile criterion optimization model and the chance-constrained programming technique, respectively.

Suggested Citation

  • Wang, S. & Huang, G.H., 2016. "Risk-based factorial probabilistic inference for optimization of flood control systems with correlated uncertainties," European Journal of Operational Research, Elsevier, vol. 249(1), pages 258-269.
  • Handle: RePEc:eee:ejores:v:249:y:2016:i:1:p:258-269
    DOI: 10.1016/j.ejor.2015.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715007602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    2. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    3. Bravo, Mila & Gonzalez, Ignacio, 2009. "Applying stochastic goal programming: A case study on water use planning," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1123-1129, August.
    4. Zhou, Yang & Huang, Guo H. & Yang, Boting, 2013. "Water resources management under multi-parameter interactions: A factorial multi-stage stochastic programming approach," Omega, Elsevier, vol. 41(3), pages 559-573.
    5. S. Wang & G. Huang, 2012. "Identifying Optimal Water Resources Allocation Strategies through an Interactive Multi-Stage Stochastic Fuzzy Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2015-2038, May.
    6. Muñoz, Maria M. & Ruiz, Francisco, 2009. "ISTMO: An interval reference point-based method for stochastic multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 197(1), pages 25-35, August.
    7. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    8. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    9. Arthur M. Geoffrion, 1967. "Stochastic Programming with Aspiration or Fractile Criteria," Management Science, INFORMS, vol. 13(9), pages 672-679, May.
    10. Huang, G. H., 1998. "A hybrid inexact-stochastic water management model," European Journal of Operational Research, Elsevier, vol. 107(1), pages 137-158, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Shibao & Sun, Huaping & Sun, Dongying & Guo, Min & Bai, Xiao, 2020. "Assessment on reservoir flood resources utilization of Ankang Reservoir, China," Resources Policy, Elsevier, vol. 68(C).
    2. Xuanpeng Yin & Xuanhua Xu & Xiaohong Chen, 2020. "Risk mechanisms of large group emergency decision-making based on multi-agent simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1009-1034, August.
    3. Yin, Xuanpeng & Xu, Xuanhua & Pan, Bin, 2021. "Selection of Strategy for Large Group Emergency Decision-making based on Risk Measurement," Reliability Engineering and System Safety, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, S. & Huang, G.H., 2015. "A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions: An application to water resources management," European Journal of Operational Research, Elsevier, vol. 240(2), pages 572-581.
    2. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    3. Ballestero, Enrique & Bravo, Mila & Pérez-Gladish, Blanca & Arenas-Parra, Mar & Plà-Santamaria, David, 2012. "Socially Responsible Investment: A multicriteria approach to portfolio selection combining ethical and financial objectives," European Journal of Operational Research, Elsevier, vol. 216(2), pages 487-494.
    4. Burrow, Andy & Newman, Alexandra, 2020. "Optimal design and operation of River Basin Storage," Omega, Elsevier, vol. 95(C).
    5. Jin, L. & Huang, G.H. & Fan, Y.R. & Wang, L. & Wu, T., 2015. "A pseudo-optimal inexact stochastic interval T2 fuzzy sets approach for energy and environmental systems planning under uncertainty: A case study for Xiamen City of China," Applied Energy, Elsevier, vol. 138(C), pages 71-90.
    6. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    7. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    8. Mila Bravo & Dylan Jones & David Pla-Santamaria & Francisco Salas-Molina, 2022. "Encompassing statistically unquantifiable randomness in goal programming: an application to portfolio selection," Operational Research, Springer, vol. 22(5), pages 5685-5706, November.
    9. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    10. Liu, M. & Huang, G.H. & Liao, R.F. & Li, Y.P. & Xie, Y.L., 2013. "Fuzzy two-stage non-point source pollution management model for agricultural systems—A case study for the Lake Tai Basin, China," Agricultural Water Management, Elsevier, vol. 121(C), pages 27-41.
    11. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    12. Irfan Ali & Umar Muhammad Modibbo & Jahangir Chauhan & Maryam Meraj, 2021. "An integrated multi-objective optimization modelling for sustainable development goals of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3811-3831, March.
    13. Ahmed, Sajjad & Elsholkami, Mohamed & Elkamel, Ali & Du, Juan & Ydstie, Erik B. & Douglas, Peter L., 2014. "Financial risk management for new technology integration in energy planning under uncertainty," Applied Energy, Elsevier, vol. 128(C), pages 75-81.
    14. Alonso-Ayuso, Antonio & Carvallo, Felipe & Escudero, Laureano F. & Guignard, Monique & Pi, Jiaxing & Puranmalka, Raghav & Weintraub, Andrés, 2014. "Medium range optimization of copper extraction planning under uncertainty in future copper prices," European Journal of Operational Research, Elsevier, vol. 233(3), pages 711-726.
    15. Zhao, Siwei & Liu, Weidong & Zhu, Mengyuan & Ma, Yanfang & Li, Zongmin, 2021. "A priority-based multi-objective framework for water resources diversion and allocation in the middle route of the South-to-North Water Diversion Project," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    16. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    17. Mohammadi, M. & Dehbari, S. & Vahdani, Behnam, 2014. "Design of a bi-objective reliable healthcare network with finite capacity queue under service covering uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 15-41.
    18. Wei Lu & Xiaosheng Qin, 2019. "An Integrated Fuzzy Simulation-Optimization Model for Supporting Low Impact Development Design under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4351-4365, September.
    19. Alireza Azimian & Belaid Aouni, 2017. "Supply chain management through the stochastic goal programming model," Annals of Operations Research, Springer, vol. 251(1), pages 351-365, April.
    20. H. Lu & G. Huang & G. Zeng & I. Maqsood & L. He, 2008. "An Inexact Two-stage Fuzzy-stochastic Programming Model for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 991-1016, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:249:y:2016:i:1:p:258-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.