IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v248y2016i1p146-158.html
   My bibliography  Save this article

Part sojourn time distribution in a two-machine line

Author

Listed:
  • Shi, Chuan
  • Gershwin, Stanley B.

Abstract

The time that a part may spend in a buffer between successive operations is limited in some manufacturing processes. Parts that wait too long must be reworked or discarded due to the risk of quality degradation. In this paper, we present an analytic formulation for the steady-state probability distribution of the time a part spends in a two-machine, one-buffer transfer line (the part sojourn time). To do so, we develop a set of recurrence equations for the conditional probability of a part’s sojourn time, given the number of parts already in the buffer when it arrives and the state of the downstream machine. Then we compute the unconditional probabilities of the part sojourn time using the total probability theorem. Numerical results are provided to demonstrate how the shape of the distribution depends on machine reliability and the buffer size. The analytic formulation is also applied to approximately compute the part sojourn time distribution in a given buffer of a long line. Comparison with simulation shows good agreement.

Suggested Citation

  • Shi, Chuan & Gershwin, Stanley B., 2016. "Part sojourn time distribution in a two-machine line," European Journal of Operational Research, Elsevier, vol. 248(1), pages 146-158.
  • Handle: RePEc:eee:ejores:v:248:y:2016:i:1:p:146-158
    DOI: 10.1016/j.ejor.2015.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715006384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Liberopoulos & Panagiotis Tsarouhas, 2002. "Systems Analysis Speeds Up Chipita's Food-Processing Line," Interfaces, INFORMS, vol. 32(3), pages 62-76, June.
    2. Perkgoz, Cahit & Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2007. "A multi-objective lead time control problem in multi-stage assembly systems using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 180(1), pages 292-308, July.
    3. Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2006. "Modelling complex assemblies as a queueing network for lead time control," European Journal of Operational Research, Elsevier, vol. 174(1), pages 150-168, October.
    4. Stanley B. Gershwin, 1987. "An Efficient Decomposition Method for the Approximate Evaluation of Tandem Queues with Finite Storage Space and Blocking," Operations Research, INFORMS, vol. 35(2), pages 291-305, April.
    5. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.
    6. Tan, BarIs & Gershwin, Stanley B., 2009. "Analysis of a general Markovian two-stage continuous-flow production system with a finite buffer," International Journal of Production Economics, Elsevier, vol. 120(2), pages 327-339, August.
    7. Shi, Chuan & Gershwin, Stanley B., 2009. "An efficient buffer design algorithm for production line profit maximization," International Journal of Production Economics, Elsevier, vol. 122(2), pages 725-740, December.
    8. Svenja Lagershausen & Bariş Tan, 2015. "On the Exact Inter-departure, Inter-start, and Cycle Time Distribution of Closed Queueing Networks Subject to Blocking," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 673-692, July.
    9. George Liberopoulos & George Kozanidis & Panagiotis Tsarouhas, 2007. "Performance Evaluation of an Automatic Transfer Line with WIP Scrapping During Long Failures," Manufacturing & Service Operations Management, INFORMS, vol. 9(1), pages 62-83, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
    2. Atencia, I., 2017. "A Geo/G/1 retrial queueing system with priority services," European Journal of Operational Research, Elsevier, vol. 256(1), pages 178-186.
    3. Zhou, Yifan & Guo, Yiming & Lin, Tian Ran & Ma, Lin, 2018. "Maintenance optimisation of a series production system with intermediate buffers using a multi-agent FMDP," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 39-48.
    4. Ranasinghe, Thilini & Senanayake, Chanaka D. & Grosse, Eric H., 2024. "Effects of stochastic and heterogeneous worker learning on the performance of a two-workstation production system," International Journal of Production Economics, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
    2. Morabito, Reinaldo & de Souza, Mauricio C. & Vazquez, Mariana, 2014. "Approximate decomposition methods for the analysis of multicommodity flow routing in generalized queuing networks," European Journal of Operational Research, Elsevier, vol. 232(3), pages 618-629.
    3. Cruz, F.R.B. & Van Woensel, T. & Smith, J. MacGregor, 2010. "Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 224-234, June.
    4. Ünsal Özdoğru & Tayfur Altiok, 2015. "Continuous material flow systems: analysis of marine ports handling bulk materials," Annals of Operations Research, Springer, vol. 231(1), pages 79-104, August.
    5. Andrea Matta & Francesca Simone, 2016. "Analysis of two-machine lines with finite buffer, operation-dependent and time-dependent failure modes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1850-1862, March.
    6. Kolb, Oliver & Göttlich, Simone, 2015. "A continuous buffer allocation model using stochastic processes," European Journal of Operational Research, Elsevier, vol. 242(3), pages 865-874.
    7. Elisa Gebennini & Andrea Grassi & Cesare Fantuzzi, 2015. "The two-machine one-buffer continuous time model with restart policy," Annals of Operations Research, Springer, vol. 231(1), pages 33-64, August.
    8. Saeed Yaghoubi, 2015. "Due-date assignment for multi-server multi-stage assembly systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1246-1256, May.
    9. Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
    10. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    11. Yang Woo Shin, 2022. "An Algorithm for Asymptotic Mean and Variance for Markov Renewal Process of M/G/1 Type with Finite Level," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 195-212, March.
    12. Li Cunbin & Liu Yunqi & Li Shuke, 2015. "A Dynamic Model of Procurement Risk Element Transmission in Construction Projects," Journal of Systems Science and Information, De Gruyter, vol. 3(2), pages 133-144, April.
    13. Shabnam Rekabi & Ali Ghodratnama & Amir Azaron, 2022. "Designing pharmaceutical supply chain networks with perishable items considering congestion," Operational Research, Springer, vol. 22(4), pages 4159-4219, September.
    14. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    15. Azaron, A. & Brown, K.N. & Tarim, S.A. & Modarres, M., 2008. "A multi-objective stochastic programming approach for supply chain design considering risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 129-138, November.
    16. Saied Samiedaluie & Vedat Verter, 2019. "The impact of specialization of hospitals on patient access to care; a queuing analysis with an application to a neurological hospital," Health Care Management Science, Springer, vol. 22(4), pages 709-726, December.
    17. Guan Wang & Yang Woo Shin & Dug Hee Moon, 2016. "Comparison of three flow line layouts with unreliable machines and profit maximization," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 669-693, December.
    18. Colledani, Marcello & Tolio, Tullio, 2009. "Performance evaluation of production systems monitored by statistical process control and off-line inspections," International Journal of Production Economics, Elsevier, vol. 120(2), pages 348-367, August.
    19. Ziwei Lin & Nicla Frigerio & Andrea Matta & Shichang Du, 2021. "Multi-fidelity surrogate-based optimization for decomposed buffer allocation problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 223-253, March.
    20. George Liberopoulos, 2020. "Comparison of optimal buffer allocation in flow lines under installation buffer, echelon buffer, and CONWIP policies," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 297-365, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:248:y:2016:i:1:p:146-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.