IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v242y2015i3p1028-1038.html
   My bibliography  Save this article

Solving the Aircraft Landing Problem with time discretization approach

Author

Listed:
  • Faye, Alain

Abstract

This paper studies the multiple runway Aircraft Landing Problem. The aim is to schedule arriving aircraft to available runways at the airport. Landing times lie within predefined time windows and safety separation constraints between two successive landings must be satisfied. We propose a new approach for solving the problem. The method is based on an approximation of the separation time matrix and on time discretization. The separation matrix is approximated by a rank two matrix. This provides lower bounds or upper bounds depending on the choice of the approximating matrix. These bounds are used in a constraint generation algorithm to, exactly or heuristically, solve the problem. Computational tests, performed on publicly available problems involving up to 500 aircraft, show the efficiency of the approach.

Suggested Citation

  • Faye, Alain, 2015. "Solving the Aircraft Landing Problem with time discretization approach," European Journal of Operational Research, Elsevier, vol. 242(3), pages 1028-1038.
  • Handle: RePEc:eee:ejores:v:242:y:2015:i:3:p:1028-1038
    DOI: 10.1016/j.ejor.2014.10.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714009035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.10.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J E Beasley & J Sonander & P Havelock, 2001. "Scheduling aircraft landings at London Heathrow using a population heuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(5), pages 483-493, May.
    2. J E Beasley & M Krishnamoorthy & Y M Sharaiha & D Abramson, 2004. "Displacement problem and dynamically scheduling aircraft landings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 54-64, January.
    3. Pinol, H. & Beasley, J.E., 2006. "Scatter Search and Bionomic Algorithms for the aircraft landing problem," European Journal of Operational Research, Elsevier, vol. 171(2), pages 439-462, June.
    4. Soomer, M.J. & Franx, G.J., 2008. "Scheduling aircraft landings using airlines' preferences," European Journal of Operational Research, Elsevier, vol. 190(1), pages 277-291, October.
    5. Artiouchine, Konstantin & Baptiste, Philippe & Dürr, Christoph, 2008. "Runway sequencing with holding patterns," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1254-1266, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pohl, Maximilian & Artigues, Christian & Kolisch, Rainer, 2022. "Solving the time-discrete winter runway scheduling problem: A column generation and constraint programming approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 674-689.
    2. Marie-Sklaerder Vié & Nicolas Zufferey & Roel Leus, 2022. "Aircraft landing planning under uncertain conditions," Journal of Scheduling, Springer, vol. 25(2), pages 203-228, April.
    3. Lieder, Alexander & Stolletz, Raik, 2016. "Scheduling aircraft take-offs and landings on interdependent and heterogeneous runways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 167-188.
    4. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    5. Marcella Samà & Andrea D’Ariano & Konstantin Palagachev & Matthias Gerdts, 2019. "Integration methods for aircraft scheduling and trajectory optimization at a busy terminal manoeuvring area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 641-681, September.
    6. Bennell, Julia A. & Mesgarpour, Mohammad & Potts, Chris N., 2017. "Dynamic scheduling of aircraft landings," European Journal of Operational Research, Elsevier, vol. 258(1), pages 315-327.
    7. Bo Xu & Weimin Ma & Hui Huang & Lei Yue, 2016. "Weighted Constrained Position Shift Model for Aircraft Arrival Sequencing and Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-22, August.
    8. Zhang, Junfeng & Zhao, Pengli & Zhang, Yu & Dai, Ximei & Sui, Dong, 2020. "Criteria selection and multi-objective optimization of aircraft landing problem," Journal of Air Transport Management, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Bennell & Mohammad Mesgarpour & Chris Potts, 2013. "Airport runway scheduling," Annals of Operations Research, Springer, vol. 204(1), pages 249-270, April.
    2. Bennell, Julia A. & Mesgarpour, Mohammad & Potts, Chris N., 2017. "Dynamic scheduling of aircraft landings," European Journal of Operational Research, Elsevier, vol. 258(1), pages 315-327.
    3. Lieder, Alexander & Briskorn, Dirk & Stolletz, Raik, 2015. "A dynamic programming approach for the aircraft landing problem with aircraft classes," European Journal of Operational Research, Elsevier, vol. 243(1), pages 61-69.
    4. Marie-Sklaerder Vié & Nicolas Zufferey & Roel Leus, 2022. "Aircraft landing planning under uncertain conditions," Journal of Scheduling, Springer, vol. 25(2), pages 203-228, April.
    5. Ng, K.K.H. & Lee, C.K.M. & Chan, Felix T.S. & Qin, Yichen, 2017. "Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 115-136.
    6. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    7. Chandra, Aitichya & Choubey, Nipun & Verma, Ashish & Sooraj, K.P., 2024. "Quasi-stochastic optimization model for time-based arrival scheduling considering Standard Terminal Arrival (STAR) track time and a new delay-conflict relationship," Journal of Air Transport Management, Elsevier, vol. 115(C).
    8. Ghoniem, Ahmed & Farhadi, Farbod & Reihaneh, Mohammad, 2015. "An accelerated branch-and-price algorithm for multiple-runway aircraft sequencing problems," European Journal of Operational Research, Elsevier, vol. 246(1), pages 34-43.
    9. Hancerliogullari, Gulsah & Rabadi, Ghaith & Al-Salem, Ameer H. & Kharbeche, Mohamed, 2013. "Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 39-48.
    10. Marcella Samà & Andrea D’Ariano & Konstantin Palagachev & Matthias Gerdts, 2019. "Integration methods for aircraft scheduling and trajectory optimization at a busy terminal manoeuvring area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 641-681, September.
    11. A R Brentnall & R C H Cheng, 2009. "Some effects of aircraft arrival sequence algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 962-972, July.
    12. Soomer, M.J. & Franx, G.J., 2008. "Scheduling aircraft landings using airlines' preferences," European Journal of Operational Research, Elsevier, vol. 190(1), pages 277-291, October.
    13. Sabar, Nasser R. & Kendall, Graham, 2015. "An iterated local search with multiple perturbation operators and time varying perturbation strength for the aircraft landing problem," Omega, Elsevier, vol. 56(C), pages 88-98.
    14. Pinol, H. & Beasley, J.E., 2006. "Scatter Search and Bionomic Algorithms for the aircraft landing problem," European Journal of Operational Research, Elsevier, vol. 171(2), pages 439-462, June.
    15. Anna Kwasiborska & Jacek Skorupski, 2021. "Assessment of the Method of Merging Landing Aircraft Streams in the Context of Fuel Consumption in the Airspace," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    16. Bo Xu & Weimin Ma & Hui Huang & Lei Yue, 2016. "Weighted Constrained Position Shift Model for Aircraft Arrival Sequencing and Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-22, August.
    17. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    18. Daniel Karapetyan & Jason A. D. Atkin & Andrew J. Parkes & Juan Castro-Gutierrez, 2017. "Lessons from building an automated pre-departure sequencer for airports," Annals of Operations Research, Springer, vol. 252(2), pages 435-453, May.
    19. Vadlamani, Satish & Hosseini, Seyedmohsen, 2014. "A novel heuristic approach for solving aircraft landing problem with single runway," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 144-148.
    20. Lorenzo Castelli & Paola Pellegrini & Raffaele Pesenti, 2012. "Airport slot allocation in Europe: economic efficiency and fairness," International Journal of Revenue Management, Inderscience Enterprises Ltd, vol. 6(1/2), pages 28-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:242:y:2015:i:3:p:1028-1038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.