IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v236y2014i1p27-36.html
   My bibliography  Save this article

Frequency optimization in public transportation systems: Formulation and metaheuristic approach

Author

Listed:
  • Martínez, Héctor
  • Mauttone, Antonio
  • Urquhart, María E.

Abstract

We study the transit frequency optimization problem, which aims to determine the time interval between subsequent buses for a set of public transportation lines given by their itineraries, i.e., sequences of stops and street sections. The solution should satisfy a given origin–destination demand and a constraint on the available fleet of buses. We propose a new mixed integer linear programming (MILP) formulation for an already existing model, originally formulated as a nonlinear bilevel one. The proposed formulation is able to solve to optimality real small-sized instances of the problem using MILP techniques. For solving larger instances we propose a metaheuristic which accuracy is estimated by comparing against exact results (when possible). Both exact and approximated approaches are tested by using existing cases, including a real one related to a small-city which public transportation system comprises 13 lines. The magnitude of the improvement of that system obtained by applying the proposed methodologies, is comparable with the improvements reported in the literature, related to other real systems. Also, we investigate the applicability of the metaheuristic to a larger-sized real case, comprising more than 130 lines.

Suggested Citation

  • Martínez, Héctor & Mauttone, Antonio & Urquhart, María E., 2014. "Frequency optimization in public transportation systems: Formulation and metaheuristic approach," European Journal of Operational Research, Elsevier, vol. 236(1), pages 27-36.
  • Handle: RePEc:eee:ejores:v:236:y:2014:i:1:p:27-36
    DOI: 10.1016/j.ejor.2013.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713009065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    2. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    3. Szeto, W.Y. & Wu, Yongzhong, 2011. "A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong," European Journal of Operational Research, Elsevier, vol. 209(2), pages 141-155, March.
    4. Han, Anthony F. & Wilson, Nigel H. M., 1982. "The allocation of buses in heavily utilized networks with overlapping routes," Transportation Research Part B: Methodological, Elsevier, vol. 16(3), pages 221-232, June.
    5. Joaquín de Cea & Enrique Fernández, 1993. "Transit Assignment for Congested Public Transport Systems: An Equilibrium Model," Transportation Science, INFORMS, vol. 27(2), pages 133-147, May.
    6. Claude Chriqui & Pierre Robillard, 1975. "Common Bus Lines," Transportation Science, INFORMS, vol. 9(2), pages 115-121, May.
    7. Gao, Ziyou & Sun, Huijun & Shan, Lian Long, 2004. "A continuous equilibrium network design model and algorithm for transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 235-250, March.
    8. Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
    9. Ceder, Avishai & Wilson, Nigel H. M., 1986. "Bus network design," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 331-344, August.
    10. Luigi dell’Olio & Angel Ibeas & Francisco Ruisánchez, 2012. "Optimizing bus-size and headway in transit networks," Transportation, Springer, vol. 39(2), pages 449-464, March.
    11. Leiva, Carola & Muñoz, Juan Carlos & Giesen, Ricardo & Larrain, Homero, 2010. "Design of limited-stop services for an urban bus corridor with capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1186-1201, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Sun & Kun Lin & Pengpeng Jiao & Zelin Deng & Wei He, 2021. "Research on Transfer Optimization Model of County Transit Network," IJERPH, MDPI, vol. 18(9), pages 1-16, May.
    2. Cinzia Daraio & Marco Diana & Flavia Di Costa & Claudio Leporelli & Giorgio Matteucci & Alberto Nastasi, 2014. "Efficiency and effectiveness in the urban public transport sector: a critical review with directions for future research," DIAG Technical Reports 2014-14, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    3. Nuri Cihat Onat & Galal M. Abdella & Murat Kucukvar & Adeeb A. Kutty & Munera Al‐Nuaimi & Gürkan Kumbaroğlu & Melih Bulu, 2021. "How eco‐efficient are electric vehicles across Europe? A regionalized life cycle assessment‐based eco‐efficiency analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 941-956, September.
    4. Sadrani, Mohammad & Tirachini, Alejandro & Antoniou, Constantinos, 2022. "Vehicle dispatching plan for minimizing passenger waiting time in a corridor with buses of different sizes: Model formulation and solution approaches," European Journal of Operational Research, Elsevier, vol. 299(1), pages 263-282.
    5. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    6. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    7. Benjamin Otto, 2019. "Aggregation techniques for frequency assignment in public transportation," Public Transport, Springer, vol. 11(1), pages 51-87, June.
    8. Daraio, Cinzia & Diana, Marco & Di Costa, Flavia & Leporelli, Claudio & Matteucci, Giorgio & Nastasi, Alberto, 2016. "Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research," European Journal of Operational Research, Elsevier, vol. 248(1), pages 1-20.
    9. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    10. Wang, Zhenjie & Zhang, Dezhi & Tavasszy, Lóránt & Fazi, Stefano, 2023. "Integrated multimodal freight service network design and pricing with a competing service integrator and heterogeneous shipper classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    11. Sánchez-Martínez, Gabriel E. & Koutsopoulos, Haris N. & Wilson, Nigel H.M., 2016. "Optimal allocation of vehicles to bus routes using automatically collected data and simulation modelling," Research in Transportation Economics, Elsevier, vol. 59(C), pages 268-276.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2021. "Service operation design in a transit network with congested common lines," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 81-102.
    2. Cancela, Héctor & Mauttone, Antonio & Urquhart, María E., 2015. "Mathematical programming formulations for transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 17-37.
    3. Suman, Hemant & Larrain, Homero & Muñoz, Juan Carlos, 2021. "The impact of using a naïve approach in the limited-stop bus service design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 45-61.
    4. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    5. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    6. Wang, David Z.W. & Nayan, Ashish & Szeto, W.Y., 2018. "Optimal bus service design with limited stop services in a travel corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 70-86.
    7. Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
    8. Philipp Heyken Soares, 2021. "Zone-based public transport route optimisation in an urban network," Public Transport, Springer, vol. 13(1), pages 197-231, March.
    9. Yuan Liu & Heshan Zhang & Tao Xu & Yaping Chen, 2022. "A Heuristic Algorithm Based on Travel Demand for Transit Network Design," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    10. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    11. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    12. Roberto Cominetti & José Correa, 2001. "Common-Lines and Passenger Assignment in Congested Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 250-267, August.
    13. Benjamin Otto, 2019. "Aggregation techniques for frequency assignment in public transportation," Public Transport, Springer, vol. 11(1), pages 51-87, June.
    14. Esteve Codina, 2013. "A Variational Inequality Reformulation of a Congested Transit Assignment Model by Cominetti, Correa, Cepeda, and Florian," Transportation Science, INFORMS, vol. 47(2), pages 231-246, May.
    15. Agostino Nuzzolo & Francesco Russo & Umberto Crisalli, 2001. "A Doubly Dynamic Schedule-based Assignment Model for Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 268-285, August.
    16. Soto, Guillermo & Larrain, Homero & Muñoz, Juan Carlos, 2017. "A new solution framework for the limited-stop bus service design problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 67-85.
    17. Zhang, Yu & Tang, Jiafu, 2018. "Itinerary planning with time budget for risk-averse travelers," European Journal of Operational Research, Elsevier, vol. 267(1), pages 288-303.
    18. Kumar, Pramesh & Khani, Alireza, 2022. "Planning of integrated mobility-on-demand and urban transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 499-521.
    19. Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
    20. Cortés, Cristián E. & Jara-Moroni, Pedro & Moreno, Eduardo & Pineda, Cristobal, 2013. "Stochastic transit equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 29-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:236:y:2014:i:1:p:27-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.