IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v229y2013i3p645-653.html
   My bibliography  Save this article

Cone contraction and reference point methods for multi-criteria mixed integer optimization

Author

Listed:
  • Kallio, Markku
  • Halme, Merja

Abstract

Interactive approaches employing cone contraction for multi-criteria mixed integer optimization are introduced. In each iteration, the decision maker (DM) is asked to give a reference point (new aspiration levels). The subsequent Pareto optimal point is the reference point projected on the set of admissible objective vectors using a suitable scalarizing function. Thereby, the procedures solve a sequence of optimization problems with integer variables. In such a process, the DM provides additional preference information via pair-wise comparisons of Pareto optimal points identified. Using such preference information and assuming a quasiconcave and non-decreasing value function of the DM we restrict the set of admissible objective vectors by excluding subsets, which cannot improve over the solutions already found. The procedures terminate if all Pareto optimal solutions have been either generated or excluded. In this case, the best Pareto point found is an optimal solution. Such convergence is expected in the special case of pure integer optimization; indeed, numerical simulation tests with multi-criteria facility location models and knapsack problems indicate reasonably fast convergence, in particular, under a linear value function. We also propose a procedure to test whether or not a solution is a supported Pareto point (optimal under some linear value function).

Suggested Citation

  • Kallio, Markku & Halme, Merja, 2013. "Cone contraction and reference point methods for multi-criteria mixed integer optimization," European Journal of Operational Research, Elsevier, vol. 229(3), pages 645-653.
  • Handle: RePEc:eee:ejores:v:229:y:2013:i:3:p:645-653
    DOI: 10.1016/j.ejor.2013.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713002142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    2. Pekka Korhonen & Jyrki Wallenius & Stanley Zionts, 1984. "Solving the Discrete Multiple Criteria Problem using Convex Cones," Management Science, INFORMS, vol. 30(11), pages 1336-1345, November.
    3. Matthias Ehrgott & Xavier Gandibleux, 2004. "Approximative solution methods for multiobjective combinatorial optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-63, June.
    4. Alves, Maria Joao & Climaco, Joao, 1999. "Using cutting planes in an interactive reference point approach for multiobjective integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 117(3), pages 565-577, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karakaya, G. & Köksalan, M., 2023. "Finding preferred solutions under weighted Tchebycheff preference functions for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 308(1), pages 215-228.
    2. Rong, Aiying & Figueira, José Rui & Lahdelma, Risto, 2015. "A two phase approach for the bi-objective non-convex combined heat and power production planning problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 296-308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banu Lokman & Murat Köksalan & Pekka J. Korhonen & Jyrki Wallenius, 2016. "An interactive algorithm to find the most preferred solution of multi-objective integer programs," Annals of Operations Research, Springer, vol. 245(1), pages 67-95, October.
    2. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
    3. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    4. Aritra Pal & Hadi Charkhgard, 2019. "A Feasibility Pump and Local Search Based Heuristic for Bi-Objective Pure Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 115-133, February.
    5. Nikolaos Argyris & Alec Morton & José Rui Figueira, 2014. "CUT: A Multicriteria Approach for Concavifiable Preferences," Operations Research, INFORMS, vol. 62(3), pages 633-642, June.
    6. Argyris, Nikolaos & Karsu, Özlem & Yavuz, Mirel, 2022. "Fair resource allocation: Using welfare-based dominance constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 560-578.
    7. Konur, Dinçer & Campbell, James F. & Monfared, Sepideh A., 2017. "Economic and environmental considerations in a stochastic inventory control model with order splitting under different delivery schedules among suppliers," Omega, Elsevier, vol. 71(C), pages 46-65.
    8. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    9. M. Ehrgott & J. Puerto & A. M. Rodríguez-Chía, 2007. "Primal-Dual Simplex Method for Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 483-497, September.
    10. Tobias Kuhn & Stefan Ruzika, 2017. "A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions," Journal of Global Optimization, Springer, vol. 67(3), pages 581-600, March.
    11. Nowak, Maciej, 2007. "Aspiration level approach in stochastic MCDM problems," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1626-1640, March.
    12. Barbati, Maria & Greco, Salvatore & Kadziński, Miłosz & Słowiński, Roman, 2018. "Optimization of multiple satisfaction levels in portfolio decision analysis," Omega, Elsevier, vol. 78(C), pages 192-204.
    13. Peter Reichert & Klemens Niederberger & Peter Rey & Urs Helg & Susanne Haertel-Borer, 2019. "The need for unconventional value aggregation techniques: experiences from eliciting stakeholder preferences in environmental management," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 197-219, November.
    14. Luis Paquete & Tommaso Schiavinotto & Thomas Stützle, 2007. "On local optima in multiobjective combinatorial optimization problems," Annals of Operations Research, Springer, vol. 156(1), pages 83-97, December.
    15. Roman Vavrek, 2019. "Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1821-1843, November.
    16. Morton, Alec, 2014. "Aversion to health inequalities in healthcare prioritisation: A multicriteria optimisation perspective," Journal of Health Economics, Elsevier, vol. 36(C), pages 164-173.
    17. Delorme, Xavier & Gandibleux, Xavier & Degoutin, Fabien, 2010. "Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 206-217, July.
    18. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    19. Vetschera, Rudolf, 1992. "Estimating preference cones from discrete choices: Computational techniques and experiences," Discussion Papers, Series I 259, University of Konstanz, Department of Economics.
    20. Bartosz Sawik, 2023. "Space Mission Risk, Sustainability and Supply Chain: Review, Multi-Objective Optimization Model and Practical Approach," Sustainability, MDPI, vol. 15(14), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:229:y:2013:i:3:p:645-653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.