IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v180y2007i1p99-115.html
   My bibliography  Save this article

A review of interactive methods for multiobjective integer and mixed-integer programming

Author

Listed:
  • Alves, Maria Joao
  • Climaco, Joao

Abstract

No abstract is available for this item.

Suggested Citation

  • Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
  • Handle: RePEc:eee:ejores:v:180:y:2007:i:1:p:99-115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)00238-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chalmet, L. G. & Lemonidis, L. & Elzinga, D. J., 1986. "An algorithm for the bi-criterion integer programming problem," European Journal of Operational Research, Elsevier, vol. 25(2), pages 292-300, May.
    2. Kato, Kosuke & Sakawa, Masatoshi, 1998. "An interactive fuzzy satisficing method for large scale multiobjective 0-1 programming problems with fuzzy parameters through genetic algorithms," European Journal of Operational Research, Elsevier, vol. 107(3), pages 590-598, June.
    3. Deckro, R. F. & Winkofsky, E. P., 1983. "Solving zero-one multiple objective programs through implicit enumeration," European Journal of Operational Research, Elsevier, vol. 12(4), pages 362-374, April.
    4. Ramesh, R. & Zionts, Stanley & Karwan, Mark H., 1986. "A class of practical interactive branch and bound algorithms for multicriteria integer programming," European Journal of Operational Research, Elsevier, vol. 26(1), pages 161-172, July.
    5. Ralph E. Steuer & Joe Silverman & Alan W. Whisman, 1993. "A Combined Tchebycheff/Aspiration Criterion Vector Interactive Multiobjective Programming Procedure," Management Science, INFORMS, vol. 39(10), pages 1255-1260, October.
    6. Pekka Korhonen & Jyrki Wallenius, 1988. "A pareto race," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 615-623, December.
    7. Wan S. Shin & Diane Breivik Allen, 1994. "An interactive paired comparison method for bicriterion integer programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 423-434, April.
    8. Gerald W. Evans, 1984. "An Overview of Techniques for Solving Multiobjective Mathematical Programs," Management Science, INFORMS, vol. 30(11), pages 1268-1282, November.
    9. White, D. J., 1985. "A multiple objective interactive Lagrangean relaxation approach," European Journal of Operational Research, Elsevier, vol. 19(1), pages 82-90, January.
    10. Stanley Zionts & Jyrki Wallenius, 1983. "An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions," Management Science, INFORMS, vol. 29(5), pages 519-529, May.
    11. Alves, Maria Joao & Climaco, Joao, 1999. "Using cutting planes in an interactive reference point approach for multiobjective integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 117(3), pages 565-577, September.
    12. Odile Marcotte & Richard M. Soland, 1986. "An Interactive Branch-and-Bound Algorithm for Multiple Criteria Optimization," Management Science, INFORMS, vol. 32(1), pages 61-75, January.
    13. Roy, B., 1987. "Meaning and validity of interactive procedures as tools for decision making," European Journal of Operational Research, Elsevier, vol. 31(3), pages 297-303, September.
    14. White, D. J., 1984. "A branch and bound method for multi-objective boolean problems," European Journal of Operational Research, Elsevier, vol. 15(1), pages 126-130, January.
    15. Karaivanova, Jasmina N. & Narula, Subhash C. & Vassilev, Vassil, 1993. "An interactive procedure for multiple objective integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 68(3), pages 344-351, August.
    16. Gülseren Kiziltan & Erkut Yucaou{g}lu, 1983. "An Algorithm for Multiobjective Zero-One Linear Programming," Management Science, INFORMS, vol. 29(12), pages 1444-1453, December.
    17. Rasmussen, L. M., 1986. "Zero--one programming with multiple criteria," European Journal of Operational Research, Elsevier, vol. 26(1), pages 83-95, July.
    18. Alves, Maria Joao & Climaco, Joao, 2000. "An interactive reference point approach for multiobjective mixed-integer programming using branch-and-bound," European Journal of Operational Research, Elsevier, vol. 124(3), pages 478-494, August.
    19. Narula, Subhash C. & Vassilev, Vassil, 1994. "An interactive algorithm for solving multiple objective integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 79(3), pages 443-450, December.
    20. Karaivanova, Jasmina & Korhonen, Pekka & Narula, Subhash & Wallenius, Jyrki & Vassilev, Vassil, 1995. "A reference direction approach to multiple objective integer linear programming," European Journal of Operational Research, Elsevier, vol. 81(1), pages 176-187, February.
    21. Mavrotas, G. & Diakoulaki, D., 1998. "A branch and bound algorithm for mixed zero-one multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 107(3), pages 530-541, June.
    22. Klein, Dieter & Hannan, Edward, 1982. "An algorithm for the multiple objective integer linear programming problem," European Journal of Operational Research, Elsevier, vol. 9(4), pages 378-385, April.
    23. Sylva, John & Crema, Alejandro, 2004. "A method for finding the set of non-dominated vectors for multiple objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 158(1), pages 46-55, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ted Ralphs & Matthew Saltzman & Margaret Wiecek, 2006. "An improved algorithm for solving biobjective integer programs," Annals of Operations Research, Springer, vol. 147(1), pages 43-70, October.
    2. Zhang, Cai Wen & Ong, Hoon Liong, 2004. "Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic," European Journal of Operational Research, Elsevier, vol. 159(3), pages 545-557, December.
    3. Mavrotas, G. & Diakoulaki, D., 1998. "A branch and bound algorithm for mixed zero-one multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 107(3), pages 530-541, June.
    4. Banu Lokman & Murat Köksalan & Pekka J. Korhonen & Jyrki Wallenius, 2016. "An interactive algorithm to find the most preferred solution of multi-objective integer programs," Annals of Operations Research, Springer, vol. 245(1), pages 67-95, October.
    5. Alves, Maria Joao & Climaco, Joao, 2000. "An interactive reference point approach for multiobjective mixed-integer programming using branch-and-bound," European Journal of Operational Research, Elsevier, vol. 124(3), pages 478-494, August.
    6. Sylva, John & Crema, Alejandro, 2007. "A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1011-1027, August.
    7. Karaivanova, Jasmina & Korhonen, Pekka & Narula, Subhash & Wallenius, Jyrki & Vassilev, Vassil, 1995. "A reference direction approach to multiple objective integer linear programming," European Journal of Operational Research, Elsevier, vol. 81(1), pages 176-187, February.
    8. Demirtas, Ezgi Aktar & Üstün, Özden, 2008. "An integrated multiobjective decision making process for supplier selection and order allocation," Omega, Elsevier, vol. 36(1), pages 76-90, February.
    9. Sylva, John & Crema, Alejandro, 2004. "A method for finding the set of non-dominated vectors for multiple objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 158(1), pages 46-55, October.
    10. Skriver, Anders J. V. & Andersen, Kim Allan & Holmberg, Kaj, 2004. "Bicriteria network location (BNL) problems with criteria dependent lengths and minisum objectives," European Journal of Operational Research, Elsevier, vol. 156(3), pages 541-549, August.
    11. S. Razavyan, 2016. "A Method for Generating a Well-Distributed Pareto Set in Multiple Objective Mixed Integer Linear Programs Based on the Decision Maker’s Initial Aspiration Level," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-23, August.
    12. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    13. Ustun, Ozden & DemI[dot above]rtas, Ezgi Aktar, 2008. "An integrated multi-objective decision-making process for multi-period lot-sizing with supplier selection," Omega, Elsevier, vol. 36(4), pages 509-521, August.
    14. Nikolaos Argyris & José Figueira & Alec Morton, 2011. "Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem," Journal of Global Optimization, Springer, vol. 49(2), pages 213-235, February.
    15. Alves, Maria Joao & Climaco, Joao, 1999. "Using cutting planes in an interactive reference point approach for multiobjective integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 117(3), pages 565-577, September.
    16. Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
    17. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    18. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
    19. Dinçer Konur & Hadi Farhangi & Cihan H. Dagli, 2016. "A multi-objective military system of systems architecting problem with inflexible and flexible systems: formulation and solution methods," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 967-1006, October.
    20. Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:180:y:2007:i:1:p:99-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.