IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v226y2013i1p163-172.html
   My bibliography  Save this article

Optimal keyword bidding in search-based advertising with target exposure levels

Author

Listed:
  • Selçuk, B.
  • Özlük, Ö.

Abstract

Search-based advertising has become very popular since it provides advertisers the ability to attract potential customers with measurable returns. In this type of advertising, advertisers bid on keywords to have an impact on their ad’s placement, which in turn affects the response from potential customers. An advertiser must choose the right keywords and then bid correctly for each keyword in order to maximize the expected revenue or attain a certain level of exposure while keeping the daily costs in mind. In response to increasing need for analytical models that provide a guidance to advertisers, we construct and examine deterministic optimization models that minimize total expected advertising costs while satisfying a desired level of exposure. We investigate the relationship between our problem and the well-known continuous non-linear knapsack problem, and then solve the problem optimally by utilizing Karush–Kuhn–Tucker conditions. We present practical managerial insights based on the analysis of both a real-life data from a retailer and a hypothetical data.

Suggested Citation

  • Selçuk, B. & Özlük, Ö., 2013. "Optimal keyword bidding in search-based advertising with target exposure levels," European Journal of Operational Research, Elsevier, vol. 226(1), pages 163-172.
  • Handle: RePEc:eee:ejores:v:226:y:2013:i:1:p:163-172
    DOI: 10.1016/j.ejor.2012.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712007977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Syam Menon & Ali Amiri, 2004. "Scheduling Banner Advertisements on the Web," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 95-105, February.
    2. Zhao, Lan & Nagurney, Anna, 2008. "A network equilibrium framework for Internet advertising: Models, qualitative analysis, and algorithms," European Journal of Operational Research, Elsevier, vol. 187(2), pages 456-472, June.
    3. Kumar, Subodha & Sethi, Suresh P., 2009. "Dynamic pricing and advertising for web content providers," European Journal of Operational Research, Elsevier, vol. 197(3), pages 924-944, September.
    4. Kumar, Subodha & Jacob, Varghese S. & Sriskandarajah, Chelliah, 2006. "Scheduling advertisements on a web page to maximize revenue," European Journal of Operational Research, Elsevier, vol. 173(3), pages 1067-1089, September.
    5. Oliver J. Rutz & Michael Trusov & Randolph E. Bucklin, 2011. "Modeling Indirect Effects of Paid Search Advertising: Which Keywords Lead to More Future Visits?," Marketing Science, INFORMS, vol. 30(4), pages 646-665, July.
    6. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    7. Kinshuk Jerath & Liye Ma & Young-Hoon Park & Kannan Srinivasan, 2011. "A "Position Paradox" in Sponsored Search Auctions," Marketing Science, INFORMS, vol. 30(4), pages 612-627, July.
    8. Zsolt Katona & Miklos Sarvary, 2010. "The Race for Sponsored Links: Bidding Patterns for Search Advertising," Marketing Science, INFORMS, vol. 29(2), pages 199-215, 03-04.
    9. Sha Yang & Anindya Ghose, 2010. "Analyzing the Relationship Between Organic and Sponsored Search Advertising: Positive, Negative, or Zero Interdependence?," Marketing Science, INFORMS, vol. 29(4), pages 602-623, 07-08.
    10. John F. Stewart, 1979. "The Beta Distribution as a Model of Behavior in Consumer Goods Markets," Management Science, INFORMS, vol. 25(9), pages 813-821, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klapdor, Sebastian & Anderl, Eva M. & von Wangenheim, Florian & Schumann, Jan H., 2014. "Finding the Right Words: The Influence of Keyword Characteristics on Performance of Paid Search Campaigns," Journal of Interactive Marketing, Elsevier, vol. 28(4), pages 285-301.
    2. Bernd Skiera & Nadia Abou Nabout, 2013. "Practice Prize Paper ---PROSAD: A Bidding Decision Support System for Profit Optimizing Search Engine Advertising," Marketing Science, INFORMS, vol. 32(2), pages 213-220, March.
    3. Woochoel Shin, 2015. "Keyword Search Advertising and Limited Budgets," Marketing Science, INFORMS, vol. 34(6), pages 882-896, November.
    4. Fei Long & Kinshuk Jerath & Miklos Sarvary, 2022. "Designing an Online Retail Marketplace: Leveraging Information from Sponsored Advertising," Marketing Science, INFORMS, vol. 41(1), pages 115-138, January.
    5. Shengqi Ye & Goker Aydin & Shanshan Hu, 2015. "Sponsored Search Marketing: Dynamic Pricing and Advertising for an Online Retailer," Management Science, INFORMS, vol. 61(6), pages 1255-1274, June.
    6. Amin Sayedi & Kinshuk Jerath & Kannan Srinivasan, 2014. "Competitive Poaching in Sponsored Search Advertising and Its Strategic Impact on Traditional Advertising," Marketing Science, INFORMS, vol. 33(4), pages 586-608, July.
    7. Mengzhou Zhuang & Eric (Er) Fang & Jongkuk Lee & Xiaoling Li, 2021. "The Effects of Price Rank on Clicks and Conversions in Product List Advertising on Online Retail Platforms," Information Systems Research, INFORMS, vol. 32(4), pages 1412-1430, December.
    8. Kinshuk Jerath & Liye Ma & Young-Hoon Park & Kannan Srinivasan, 2011. "A "Position Paradox" in Sponsored Search Auctions," Marketing Science, INFORMS, vol. 30(4), pages 612-627, July.
    9. Przemys?aw Jeziorski & Sridhar Moorthy, 2018. "Advertiser Prominence Effects in Search Advertising," Management Science, INFORMS, vol. 64(3), pages 1365-1383, March.
    10. Navdeep S. Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    11. Mingyu Joo & Kenneth C. Wilbur & Bo Cowgill & Yi Zhu, 2014. "Television Advertising and Online Search," Management Science, INFORMS, vol. 60(1), pages 56-73, January.
    12. Shinjini Pandey & Goutam Dutta & Harit Joshi, 2017. "Survey on Revenue Management in Media and Broadcasting," Interfaces, INFORMS, vol. 47(3), pages 195-213, June.
    13. Ashish Agarwal & Tridas Mukhopadhyay, 2016. "The Impact of Competing Ads on Click Performance in Sponsored Search," Information Systems Research, INFORMS, vol. 27(3), pages 538-557.
    14. Wilfred Amaldoss & Kinshuk Jerath & Amin Sayedi, 2016. "Keyword Management Costs and “Broad Match” in Sponsored Search Advertising," Marketing Science, INFORMS, vol. 35(2), pages 259-274, March.
    15. Sridhar Narayanan & Kirthi Kalyanam, 2015. "Position Effects in Search Advertising and their Moderators: A Regression Discontinuity Approach," Marketing Science, INFORMS, vol. 34(3), pages 388-407, May.
    16. Navdeep Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    17. Gauzente, Claire & Roy, Yves, 2012. "Message content in keyword campaigns, click behavior, and price-consciousness: A study of millennial consumers," Journal of Retailing and Consumer Services, Elsevier, vol. 19(1), pages 78-87.
    18. Prerna Manik & Anshu Gupta & P. C. Jha & Kannan Govindan, 2016. "A Goal Programming Model for Selection and Scheduling of Advertisements on Online News Media," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(02), pages 1-41, April.
    19. Xiaomeng Du & Meng Su & Xiaoquan (Michael) Zhang & Xiaona Zheng, 2017. "Bidding for Multiple Keywords in Sponsored Search Advertising: Keyword Categories and Match Types," Information Systems Research, INFORMS, vol. 28(4), pages 711-722, December.
    20. Feng Wang & Li Zuo & Zhi Yang & Yueyan Wu, 2019. "Mobile searching versus online searching: differential effects of paid search keywords on direct and indirect sales," Journal of the Academy of Marketing Science, Springer, vol. 47(6), pages 1151-1165, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:226:y:2013:i:1:p:163-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.