IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v218y2012i3p667-675.html
   My bibliography  Save this article

Exploring the trade-off between generalization and empirical errors in a one-norm SVM

Author

Listed:
  • Aytug, Haldun
  • Sayın, Serpil

Abstract

We propose a one-norm support vector machine (SVM) formulation as an alternative to the well-known formulation that uses parameter C in order to balance the two inherent objective functions of the problem. Our formulation is motivated by the ϵ-constraint approach that is used in bicriteria optimization and we propose expressing the objective of minimizing total empirical error as a constraint with a parametric right-hand-side. Using dual variables we show equivalence of this formulation to the one with the trade-off parameter. We propose an algorithm that enumerates the entire efficient frontier by systematically changing the right-hand-side parameter. We discuss the results of a detailed computational analysis that portrays the structure of the efficient frontier as well as the computational burden associated with finding it. Our results indicate that the computational effort for obtaining the efficient frontier grows linearly in problem size, and the benefit in terms of classifier performance is almost always substantial when compared to a single run of the corresponding SVM. In addition, both the run time and accuracy compare favorably to other methods that search part or all of the regularization path of SVM.

Suggested Citation

  • Aytug, Haldun & Sayın, Serpil, 2012. "Exploring the trade-off between generalization and empirical errors in a one-norm SVM," European Journal of Operational Research, Elsevier, vol. 218(3), pages 667-675.
  • Handle: RePEc:eee:ejores:v:218:y:2012:i:3:p:667-675
    DOI: 10.1016/j.ejor.2011.11.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711010460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.11.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. Khemchandani, Reshma & Jayadeva & Chandra, Suresh, 2009. "Knowledge based proximal support vector machines," European Journal of Operational Research, Elsevier, vol. 195(3), pages 914-923, June.
    3. Serpil Say{i}n & Panos Kouvelis, 2005. "The Multiobjective Discrete Optimization Problem: A Weighted Min-Max Two-Stage Optimization Approach and a Bicriteria Algorithm," Management Science, INFORMS, vol. 51(10), pages 1572-1581, October.
    4. Serpil Sayin, 2003. "A Procedure to Find Discrete Representations of the Efficient Set with Specified Coverage Errors," Operations Research, INFORMS, vol. 51(3), pages 427-436, June.
    5. Haldun Aytug & Gary J. Koehler & Ling He, 2008. "Risk Minimization and Minimum Description for Linear Discriminant Functions," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 317-331, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stacey Faulkenberg & Margaret Wiecek, 2012. "Generating equidistant representations in biobjective programming," Computational Optimization and Applications, Springer, vol. 51(3), pages 1173-1210, April.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    4. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    5. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    6. Molly C. Klanderman & Kathryn B. Newhart & Tzahi Y. Cath & Amanda S. Hering, 2020. "Fault isolation for a complex decentralized waste water treatment facility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 931-951, August.
    7. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    8. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    9. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Luu, Tung Duy & Fadili, Jalal & Chesneau, Christophe, 2019. "PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 209-233.
    11. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    12. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
    13. Lee Kyu Ha & Chakraborty Sounak & Sun Jianguo, 2011. "Bayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-32, April.
    14. Butts, David J. & Thompson, Noelle E. & Christensen, Sonja A. & Williams, David M. & Murillo, Michael S., 2022. "Data-driven agent-based model building for animal movement through Exploratory Data Analysis," Ecological Modelling, Elsevier, vol. 470(C).
    15. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    16. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    17. Xiaoquan Wen, 2014. "Bayesian model selection in complex linear systems, as illustrated in genetic association studies," Biometrics, The International Biometric Society, vol. 70(1), pages 73-83, March.
    18. Yuanyuan Shen & Katherine P. Liao & Tianxi Cai, 2015. "Sparse kernel machine regression for ordinal outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 63-70, March.
    19. Phillip Heiler & Jana Mareckova, 2019. "Shrinkage for Categorical Regressors," Papers 1901.01898, arXiv.org.
    20. Lee Jaeeun & Chen Jie, 2019. "A penalized regression approach for DNA copy number study using the sequencing data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(4), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:218:y:2012:i:3:p:667-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.