IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v278y2019i1d10.1007_s10479-017-2472-9.html
   My bibliography  Save this article

An alternative MILP-DEA model to choose efficient unit without explicit inputs

Author

Listed:
  • Guo-Ya Gan

    (National Taiwan Ocean University)

  • Hsuan-Shih Lee

    (National Taiwan Ocean University
    Ming Chuan University)

Abstract

Data envelopment analysis is a nonparametric method to empirically measure the relative efficiency of a set of congeneric decision making units (DMUs) with multiple inputs and outputs. In the previous researches, diverse methods have been proposed to enhance the discrimination of efficient DMUs, which can also be viewed as an important issue of multi-criteria decision making. In 2013, based upon the concept of common set of weights, Toloo proposed a mixed integer linear programming approach to choosing efficient units without explicit inputs. The model hopes to directly reduce the number of efficient DMUs to be only one. However, the model proposed by Toloo does not guarantee that the maximum deviation of all DMUs from the efficient frontier is minimized. In other words, Toloo’s model finds an efficient frontier on which there is only one efficient DMU at a price that the maximum of the deviations of all DMUs from the frontier might not be minimized. To remedy such situation, we propose an alternative approach which guarantees that the maximum of the deviations of all DMUs from the frontier is minimized and under such precondition the number of the efficient DMUs is minimized.

Suggested Citation

  • Guo-Ya Gan & Hsuan-Shih Lee, 2019. "An alternative MILP-DEA model to choose efficient unit without explicit inputs," Annals of Operations Research, Springer, vol. 278(1), pages 379-391, July.
  • Handle: RePEc:spr:annopr:v:278:y:2019:i:1:d:10.1007_s10479-017-2472-9
    DOI: 10.1007/s10479-017-2472-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2472-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2472-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Lee, Hsuan-Shih & Chu, Ching-Wu & Zhu, Joe, 2011. "Super-efficiency DEA in the presence of infeasibility," European Journal of Operational Research, Elsevier, vol. 212(1), pages 141-147, July.
    3. Lidia Angulo-Meza & Marcos Lins, 2002. "Review of Methods for Increasing Discrimination in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 116(1), pages 225-242, October.
    4. Chen, Yao & Du, Juan & Huo, Jiazhen, 2013. "Super-efficiency based on a modified directional distance function," Omega, Elsevier, vol. 41(3), pages 621-625.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    7. Roll, Y & Golany, B., 1993. "Alternate methods of treating factor weights in DEA," Omega, Elsevier, vol. 21(1), pages 99-109, January.
    8. S C Ray, 2008. "The directional distance function and measurement of super-efficiency: an application to airlines data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 788-797, June.
    9. Chen, Yao & Liang, Liang, 2011. "Super-efficiency DEA in the presence of infeasibility: One model approach," European Journal of Operational Research, Elsevier, vol. 213(1), pages 359-360, August.
    10. Juan Du & Justin Wang & Yao Chen & Shin-Yi Chou & Joe Zhu, 2014. "Incorporating health outcomes in Pennsylvania hospital efficiency: an additive super-efficiency DEA approach," Annals of Operations Research, Springer, vol. 221(1), pages 161-172, October.
    11. Liang, Liang & Wu, Jie & Cook, Wade D. & Zhu, Joe, 2008. "Alternative secondary goals in DEA cross-efficiency evaluation," International Journal of Production Economics, Elsevier, vol. 113(2), pages 1025-1030, June.
    12. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming-Fu Hsu & Chingho Chang & Jhih‐Hong Zeng, 2022. "Automated text mining process for corporate risk analysis and management," Risk Management, Palgrave Macmillan, vol. 24(4), pages 386-419, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    2. Guo-Ya Gan & Hsuan-Shih Lee, 2021. "Resolving the infeasibility of the super-efficiency DEA based on DDF," Annals of Operations Research, Springer, vol. 307(1), pages 139-152, December.
    3. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    4. Lin, Ruiyue & Liu, Yue, 2019. "Super-efficiency based on the directional distance function in the presence of negative data," Omega, Elsevier, vol. 85(C), pages 26-34.
    5. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    6. Ghasemi, M.-R. & Ignatius, Joshua & Emrouznejad, Ali, 2014. "A bi-objective weighted model for improving the discrimination power in MCDEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 640-650.
    7. Ghasemi, Mohammad Reza & Ignatius, Joshua & Rezaee, Babak, 2019. "Improving discriminating power in data envelopment models based on deviation variables framework," European Journal of Operational Research, Elsevier, vol. 278(2), pages 442-447.
    8. Ebrahimi, Bohlool & Dhamotharan, Lalitha & Ghasemi, Mohammad Reza & Charles, Vincent, 2022. "A cross-inefficiency approach based on the deviation variables framework," Omega, Elsevier, vol. 111(C).
    9. Li, Yongjun & Xie, Jianhui & Wang, Meiqiang & Liang, Liang, 2016. "Super efficiency evaluation using a common platform on a cooperative game," European Journal of Operational Research, Elsevier, vol. 255(3), pages 884-892.
    10. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.
    11. Cheng, Gang & Zervopoulos, Panagiotis, 2012. "A proxy approach to dealing with the infeasibility problem in super-efficiency data envelopment analysis," MPRA Paper 42064, University Library of Munich, Germany.
    12. Afsharian, Mohsen & Ahn, Heinz & Thanassoulis, Emmanuel, 2017. "A DEA-based incentives system for centrally managed multi-unit organisations," European Journal of Operational Research, Elsevier, vol. 259(2), pages 587-598.
    13. Kanematsu, Simon Y. & Carvalho, Ney P. & Martinhon, Carlos A. & Almeida, Mariana R., 2020. "Ranking using η-efficiency and relative size measures based on DEA," Omega, Elsevier, vol. 90(C).
    14. Lee, Hsuan-Shih, 2022. "Integrating SBM model and Super-SBM model: a one-model approach," Omega, Elsevier, vol. 113(C).
    15. Fang, Tao & Fang, Debin & Yu, Bolin, 2022. "Carbon emission efficiency of thermal power generation in China: Empirical evidence from the micro-perspective of power plants," Energy Policy, Elsevier, vol. 165(C).
    16. Lee, Hsuan-Shih & Zhu, Joe, 2012. "Super-efficiency infeasibility and zero data in DEA," European Journal of Operational Research, Elsevier, vol. 216(2), pages 429-433.
    17. Ruiz, José L. & Sirvent, Inmaculada, 2016. "Common benchmarking and ranking of units with DEA," Omega, Elsevier, vol. 65(C), pages 1-9.
    18. Chen, Yao & Du, Juan & Huo, Jiazhen, 2013. "Super-efficiency based on a modified directional distance function," Omega, Elsevier, vol. 41(3), pages 621-625.
    19. Chen, Chien-Ming, 2013. "Super efficiencies or super inefficiencies? Insights from a joint computation model for slacks-based measures in DEA," European Journal of Operational Research, Elsevier, vol. 226(2), pages 258-267.
    20. Baldin, Andrea, 2017. "A DEA approach for selecting a bundle of tickets for performing arts events," Journal of Retailing and Consumer Services, Elsevier, vol. 39(C), pages 190-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:278:y:2019:i:1:d:10.1007_s10479-017-2472-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.