IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i3p1235-1243.html
   My bibliography  Save this article

On heuristic search for the single machine total weighted tardiness problem - Some theoretical insights and their empirical verification

Author

Listed:
  • Geiger, Martin Josef

Abstract

The article presents theoretical and experimental investigations of computational intelligence techniques for machine sequencing problems. Contrary to other approaches, which are experimentally driven only, our work is motivated by gaining insights in the underlying principles of heuristic search for this particular problem. We therefore first theoretically analyze local search neighborhoods, deriving expectations about their relative performance. An empirical study on benchmark data follows, verifying the initial propositions. In result, we may conclude theoretically and empirically on the relative performance of neighborhood search operators for the single machine total weighted tardiness problem. The results are useful for the proposition of heuristic search procedures based on local search, as they lead to an order of neighborhood structures with respect to their relative performance. The obtained insights are verified by investigating the effectiveness of a (multi-operator) Variable Neighborhood Search approach for the problem at hand. We are able to show that most known benchmark instances are reliably solved to optimality, leaving an overall average gap of around 1% above the optimum.

Suggested Citation

  • Geiger, Martin Josef, 2010. "On heuristic search for the single machine total weighted tardiness problem - Some theoretical insights and their empirical verification," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1235-1243, December.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:3:p:1235-1243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00470-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C.R. Reeves, 1999. "Landscapes, operators and heuristic search," Annals of Operations Research, Springer, vol. 86(0), pages 473-490, January.
    2. Bilge, Umit & Kurtulan, Mujde & Kirac, Furkan, 2007. "A tabu search algorithm for the single machine total weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1423-1435, February.
    3. H. A. J. Crauwels & C. N. Potts & L. N. Van Wassenhove, 1998. "Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 341-350, August.
    4. Richard K. Congram & Chris N. Potts & Steef L. van de Velde, 2002. "An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 52-67, February.
    5. Della Croce, Federico, 1995. "Generalized pairwise interchanges and machine scheduling," European Journal of Operational Research, Elsevier, vol. 83(2), pages 310-319, June.
    6. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huber, Sandra & Geiger, Martin Josef, 2017. "Order matters – A Variable Neighborhood Search for the Swap-Body Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 263(2), pages 419-445.
    2. Lang, Fabian & Fink, Andreas & Brandt, Tobias, 2016. "Design of automated negotiation mechanisms for decentralized heterogeneous machine scheduling," European Journal of Operational Research, Elsevier, vol. 248(1), pages 192-203.
    3. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    4. Geiger, Martin Josef, 2017. "A multi-threaded local search algorithm and computer implementation for the multi-mode, resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 729-741.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    2. Andreas C. Nearchou, 2018. "Multicriteria scheduling optimization using an elitist multiobjective population heuristic: the h-NSDE algorithm," Journal of Heuristics, Springer, vol. 24(6), pages 817-851, December.
    3. Valente, Jorge M.S., 2007. "Improving the performance of the ATC dispatch rule by using workload data to determine the lookahead parameter value," International Journal of Production Economics, Elsevier, vol. 106(2), pages 563-573, April.
    4. Bilge, Umit & Kurtulan, Mujde & Kirac, Furkan, 2007. "A tabu search algorithm for the single machine total weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1423-1435, February.
    5. Stutzle, Thomas, 2006. "Iterated local search for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1519-1539, November.
    6. O Holthaus & C Rajendran, 2005. "A fast ant-colony algorithm for single-machine scheduling to minimize the sum of weighted tardiness of jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 947-953, August.
    7. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    8. Haiyan Wang & Chung‐Yee Lee, 2005. "Production and transport logistics scheduling with two transport mode choices," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 796-809, December.
    9. Louis-Philippe Bigras & Michel Gamache & Gilles Savard, 2008. "Time-Indexed Formulations and the Total Weighted Tardiness Problem," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 133-142, February.
    10. Yang, Bibo & Geunes, Joseph, 2008. "Predictive-reactive scheduling on a single resource with uncertain future jobs," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1267-1283, September.
    11. Helena Ramalhinho-Lourenço & Olivier C. Martin & Thomas Stützle, 2000. "Iterated local search," Economics Working Papers 513, Department of Economics and Business, Universitat Pompeu Fabra.
    12. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    13. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    14. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    15. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
    16. Taudes, Alfred & Trcka, Michael & Lukanowicz, Martin, 2002. "Organizational learning in production networks," Journal of Economic Behavior & Organization, Elsevier, vol. 47(2), pages 141-163, February.
    17. Kolahan, F. & Liang, M., 1998. "An adaptive TS approach to JIT sequencing with variable processing times and sequence-dependent setups," European Journal of Operational Research, Elsevier, vol. 109(1), pages 142-159, August.
    18. D J Stewardson & R I Whitfield, 2004. "A demonstration of the utility of fractional experimental design for finding optimal genetic algorithm parameter settings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 132-138, February.
    19. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    20. Tommaso Bianconcini & David Di Lorenzo & Alessandro Lori & Fabio Schoen & Leonardo Taccari, 2018. "Exploiting sets of independent moves in VRP," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 93-120, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:3:p:1235-1243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.