IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i3p1227-1234.html
   My bibliography  Save this article

A heuristic procedure for the Capacitated m-Ring-Star problem

Author

Listed:
  • Naji-Azimi, Zahra
  • Salari, Majid
  • Toth, Paolo

Abstract

In this paper we propose a heuristic method to solve the Capacitated m-Ring-Star Problem which has many practical applications in communication networks. The problem consists of finding m rings (simple cycles) visiting a central depot, a subset of customers and a subset of potential (Steiner) nodes, while customers not belonging to any ring must be "allocated" to a visited (customer or Steiner) node. Moreover, the rings must be node-disjoint and the number of customers allocated or visited in a ring cannot be greater than the capacity Q given as an input parameter. The objective is to minimize the total visiting and allocation costs. The problem is a generalization of the Traveling Salesman Problem, hence it is NP-hard. In the proposed heuristic, after the construction phase, a series of different local search procedures are applied iteratively. This method incorporates some random aspects by perturbing the current solution through a "shaking" procedure which is applied whenever the algorithm remains in a local optimum for a given number of iterations. Computational experiments on the benchmark instances of the literature show that the proposed heuristic is able to obtain, within a short computing time, most of the optimal solutions and can improve some of the best known results.

Suggested Citation

  • Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2010. "A heuristic procedure for the Capacitated m-Ring-Star problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1227-1234, December.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:3:p:1227-1234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00469-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baldacci, R. & Dell'Amico, M., 2010. "Heuristic algorithms for the multi-depot ring-star problem," European Journal of Operational Research, Elsevier, vol. 203(1), pages 270-281, May.
    2. Labbe, Martine & Laporte, Gilbert & Rodriguez Martin, Inmaculada & Gonzalez, Juan Jose Salazar, 2005. "Locating median cycles in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 457-470, January.
    3. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    4. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1997. "A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem," Operations Research, INFORMS, vol. 45(3), pages 378-394, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. HILL, Alessandro & VOß, Stefan, 2014. "Optimal capacitated ring trees," Working Papers 2014012, University of Antwerp, Faculty of Business and Economics.
    2. Baldacci, Roberto & Hoshino, Edna A. & Hill, Alessandro, 2023. "New pricing strategies and an effective exact solution framework for profit-oriented ring arborescence problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 538-553.
    3. Baldacci, Roberto & Hill, Alessandro & Hoshino, Edna A. & Lim, Andrew, 2017. "Pricing strategies for capacitated ring-star problems based on dynamic programming algorithms," European Journal of Operational Research, Elsevier, vol. 262(3), pages 879-893.
    4. Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2012. "An Integer Linear Programming based heuristic for the Capacitated m-Ring-Star Problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 17-25.
    5. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
    6. Reihaneh, Mohammad & Ghoniem, Ahmed, 2019. "A branch-and-price algorithm for a vehicle routing with demand allocation problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 523-538.
    7. HILL, Alessandro & VOß, Stefan, 2014. "An equi-model matheuristic for the multi-depot ring star problem," Working Papers 2014015, University of Antwerp, Faculty of Business and Economics.
    8. Balakrishnan, Anantaram & Banciu, Mihai & Glowacka, Karolina & Mirchandani, Prakash, 2013. "Hierarchical approach for survivable network design," European Journal of Operational Research, Elsevier, vol. 225(2), pages 223-235.
    9. Alessandro Hill & Stefan Voß, 2016. "Optimal capacitated ring trees," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(2), pages 137-166, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2012. "An Integer Linear Programming based heuristic for the Capacitated m-Ring-Star Problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 17-25.
    2. Kaarthik Sundar & Sivakumar Rathinam, 2017. "Multiple depot ring star problem: a polyhedral study and an exact algorithm," Journal of Global Optimization, Springer, vol. 67(3), pages 527-551, March.
    3. Lamb, John D., 2012. "Variable neighbourhood structures for cycle location problems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 15-26.
    4. Dontas, Michael & Sideris, Georgios & Manousakis, Eleftherios G. & Zachariadis, Emmanouil E., 2023. "An adaptive memory matheuristic for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1010-1023.
    5. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
    6. Karapetyan, D. & Gutin, G., 2011. "Lin-Kernighan heuristic adaptations for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 208(3), pages 221-232, February.
    7. Hintsch, Timo & Irnich, Stefan, 2018. "Large multiple neighborhood search for the clustered vehicle-routing problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 118-131.
    8. Rajabighamchi, Farzaneh & van Hoesel, Stan & Defryn, Christof, 2023. "The order picking problem under a scattered storage policy," Research Memorandum 006, Maastricht University, Graduate School of Business and Economics (GSBE).
    9. Timo Hintsch & Stefan Irnich, 2017. "Large Multiple Neighborhood Search for the Clustered Vehicle-Routing Problem," Working Papers 1701, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. Wu, Qinghua & He, Mu & Hao, Jin-Kao & Lu, Yongliang, 2024. "An effective hybrid evolutionary algorithm for the clustered orienteering problem," European Journal of Operational Research, Elsevier, vol. 313(2), pages 418-434.
    11. Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2013. "An efficient evolutionary algorithm for the ring star problem," European Journal of Operational Research, Elsevier, vol. 231(1), pages 22-33.
    12. L Vogt & C A Poojari & J E Beasley, 2007. "A tabu search algorithm for the single vehicle routing allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 467-480, April.
    13. Paolo Gianessi & Laurent Alfandari & Lucas Létocart & Roberto Wolfler Calvo, 2016. "The Multicommodity-Ring Location Routing Problem," Transportation Science, INFORMS, vol. 50(2), pages 541-558, May.
    14. Bruce Golden & Zahra Naji-Azimi & S. Raghavan & Majid Salari & Paolo Toth, 2012. "The Generalized Covering Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 534-553, November.
    15. Archetti, Claudia & Carrabs, Francesco & Cerulli, Raffaele, 2018. "The Set Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 267(1), pages 264-272.
    16. Zhou, Lin & Baldacci, Roberto & Vigo, Daniele & Wang, Xu, 2018. "A Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution," European Journal of Operational Research, Elsevier, vol. 265(2), pages 765-778.
    17. Jeanette Schmidt & Stefan Irnich, 2020. "New Neighborhoods and an Iterated Local Search Algorithm for the Generalized Traveling Salesman Problem," Working Papers 2020, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    18. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    19. Liwei Zeng & Sunil Chopra & Karen Smilowitz, 2019. "The Covering Path Problem on a Grid," Transportation Science, INFORMS, vol. 53(6), pages 1656-1672, November.
    20. Zi-bin Jiang & Qiong Yang, 2016. "A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:3:p:1227-1234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.