IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v225y2013i2p223-235.html
   My bibliography  Save this article

Hierarchical approach for survivable network design

Author

Listed:
  • Balakrishnan, Anantaram
  • Banciu, Mihai
  • Glowacka, Karolina
  • Mirchandani, Prakash

Abstract

A central design challenge facing network planners is how to select a cost-effective network configuration that can provide uninterrupted service despite edge failures. In this paper, we study the Survivable Network Design (SND) problem, a core model underlying the design of such resilient networks that incorporates complex cost and connectivity trade-offs. Given an undirected graph with specified edge costs and (integer) connectivity requirements between pairs of nodes, the SND problem seeks the minimum cost set of edges that interconnects each node pair with at least as many edge-disjoint paths as the connectivity requirement of the nodes. We develop a hierarchical approach for solving the problem that integrates ideas from decomposition, tabu search, randomization, and optimization. The approach decomposes the SND problem into two subproblems, Backbone design and Access design, and uses an iterative multi-stage method for solving the SND problem in a hierarchical fashion. Since both subproblems are NP-hard, we develop effective optimization-based tabu search strategies that balance intensification and diversification to identify near-optimal solutions. To initiate this method, we develop two heuristic procedures that can yield good starting points. We test the combined approach on large-scale SND instances, and empirically assess the quality of the solutions vis-à-vis optimal values or lower bounds. On average, our hierarchical solution approach generates solutions within 2.7% of optimality even for very large problems (that cannot be solved using exact methods), and our results demonstrate that the performance of the method is robust for a variety of problems with different size and connectivity characteristics.

Suggested Citation

  • Balakrishnan, Anantaram & Banciu, Mihai & Glowacka, Karolina & Mirchandani, Prakash, 2013. "Hierarchical approach for survivable network design," European Journal of Operational Research, Elsevier, vol. 225(2), pages 223-235.
  • Handle: RePEc:eee:ejores:v:225:y:2013:i:2:p:223-235
    DOI: 10.1016/j.ejor.2012.09.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712007242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.09.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K.S. Al‐Sultan & M.A. Al‐Fawzan, 1999. "A tabu search approach to the uncapacitated facility location problem," Annals of Operations Research, Springer, vol. 86(0), pages 91-103, January.
    2. Skorin-Kapov, Darko & Skorin-Kapov, Jadranka, 1994. "On tabu search for the location of interacting hub facilities," European Journal of Operational Research, Elsevier, vol. 73(3), pages 502-509, March.
    3. Costa, Alysson M. & Cordeau, Jean-François & Laporte, Gilbert, 2008. "Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints," European Journal of Operational Research, Elsevier, vol. 190(1), pages 68-78, October.
    4. Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2010. "A heuristic procedure for the Capacitated m-Ring-Star problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1227-1234, December.
    5. Terblanche, S.E. & Wessäly, R. & Hattingh, J.M., 2011. "Survivable network design with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 210(1), pages 10-26, April.
    6. Jiefeng Xu & Steve Y. Chiu & Fred Glover, 1999. "Optimizing a Ring-Based Private Line Telecommunication Network Using Tabu Search," Management Science, INFORMS, vol. 45(3), pages 330-345, March.
    7. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    8. Fortz, Bernard & Soriano, Patrick & Wynants, Christelle, 2003. "A tabu search algorithm for self-healing ring network design," European Journal of Operational Research, Elsevier, vol. 151(2), pages 280-295, December.
    9. Cordeau, Jean-François & Laporte, Gilbert & Pasin, Federico, 2008. "An iterated local search heuristic for the logistics network design problem with single assignment," International Journal of Production Economics, Elsevier, vol. 113(2), pages 626-640, June.
    10. Steven Chamberland & Brunilde Sansò & Odile Marcotte, 2000. "Topological Design of Two-Level Telecommunication Networks with Modular Switches," Operations Research, INFORMS, vol. 48(5), pages 745-760, October.
    11. Anantaram Balakrishnan & Prakash Mirchandani & Harihara Prasad Natarajan, 2009. "Connectivity Upgrade Models for Survivable Network Design," Operations Research, INFORMS, vol. 57(1), pages 170-186, February.
    12. Tuzun, Dilek & Burke, Laura I., 1999. "A two-phase tabu search approach to the location routing problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 87-99, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Wang & Jiafa Zhu, 2023. "Pricing Analysis for Railway Multi-Ride Tickets: An Optimization Approach for Uncertain Demand within an Agreed Time Limit," Mathematics, MDPI, vol. 11(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2012. "A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon," International Journal of Production Economics, Elsevier, vol. 136(1), pages 218-230.
    2. Wang, Shaojun & Sarker, Bhaba R. & Mann, Lawrence & Triantaphyllou, Evangelos, 2004. "Resource planning and a depot location model for electric power restoration," European Journal of Operational Research, Elsevier, vol. 155(1), pages 22-43, May.
    3. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    4. Ahn, Jaemyung & de Weck, Olivier & Geng, Yue & Klabjan, Diego, 2012. "Column generation based heuristics for a generalized location routing problem with profits arising in space exploration," European Journal of Operational Research, Elsevier, vol. 223(1), pages 47-59.
    5. Fathali Firoozi, 2008. "Boundary Distributions in Testing Inequality Hypotheses," Working Papers 0046, College of Business, University of Texas at San Antonio.
    6. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
    7. Escobar, John Willmer & Linfati, Rodrigo & Baldoquin, Maria G. & Toth, Paolo, 2014. "A Granular Variable Tabu Neighborhood Search for the capacitated location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 344-356.
    8. Ghosh, Diptesh, 2003. "Neighborhood search heuristics for the uncapacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 150(1), pages 150-162, October.
    9. Yi, Wei & Ozdamar, Linet, 2007. "A dynamic logistics coordination model for evacuation and support in disaster response activities," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1177-1193, June.
    10. Anantaram Balakrishnan & Gang Li & Prakash Mirchandani, 2017. "Optimal Network Design with End-to-End Service Requirements," Operations Research, INFORMS, vol. 65(3), pages 729-750, June.
    11. Prodhon, Caroline, 2011. "A hybrid evolutionary algorithm for the periodic location-routing problem," European Journal of Operational Research, Elsevier, vol. 210(2), pages 204-212, April.
    12. Sumanta Basu & Ghosh, Diptesh, 2008. "A review of the Tabu Search Literature on Traveling Salesman Problems," IIMA Working Papers WP2008-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Lin, C.K.Y. & Kwok, R.C.W., 2006. "Multi-objective metaheuristics for a location-routing problem with multiple use of vehicles on real data and simulated data," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1833-1849, December.
    14. Drexl, M. & Schneider, M., 2014. "A Survey of the Standard Location-Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65940, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    16. Martínez-Salazar, Iris Abril & Molina, Julian & Ángel-Bello, Francisco & Gómez, Trinidad & Caballero, Rafael, 2014. "Solving a bi-objective Transportation Location Routing Problem by metaheuristic algorithms," European Journal of Operational Research, Elsevier, vol. 234(1), pages 25-36.
    17. Ting, Ching-Jung & Chen, Chia-Ho, 2013. "A multiple ant colony optimization algorithm for the capacitated location routing problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 34-44.
    18. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
    19. Wasner, Michael & Zapfel, Gunther, 2004. "An integrated multi-depot hub-location vehicle routing model for network planning of parcel service," International Journal of Production Economics, Elsevier, vol. 90(3), pages 403-419, August.
    20. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2011. "A branch and cut algorithm for the location-routing problem with simultaneous pickup and delivery," European Journal of Operational Research, Elsevier, vol. 211(2), pages 318-332, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:225:y:2013:i:2:p:223-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.