IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i1p50-54.html
   My bibliography  Save this article

Inverse minimum cost flow problems under the weighted Hamming distance

Author

Listed:
  • Jiang, Yiwei
  • Liu, Longcheng
  • Wu, Biao
  • Yao, Enyu

Abstract

Given a network N(V, A, u, c) and a feasible flow x0, an inverse minimum cost flow problem is to modify the cost vector as little as possible to make x0 form a minimum cost flow of the network. The modification can be measured by different norms. In this paper, we consider the inverse minimum cost flow problems, where the modification of the arcs is measured by the weighted Hamming distance. Both the sum-type and the bottleneck-type cases are considered. For the former, it is shown to be APX-hard due to the weighted feedback arc set problem. For the latter, we present a strongly polynomial algorithm which can be done in O(n · m2).

Suggested Citation

  • Jiang, Yiwei & Liu, Longcheng & Wu, Biao & Yao, Enyu, 2010. "Inverse minimum cost flow problems under the weighted Hamming distance," European Journal of Operational Research, Elsevier, vol. 207(1), pages 50-54, November.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:1:p:50-54
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00228-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Binwu Zhang & Jianzhong Zhang & Yong He, 2005. "The Center Location Improvement Problem Under the Hamming Distance," Journal of Combinatorial Optimization, Springer, vol. 9(2), pages 187-198, March.
    2. Longcheng Liu & Enyu Yao, 2007. "A Weighted Inverse Minimum Cut Problem Under The Bottleneck Type Hamming Distance," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(05), pages 725-736.
    3. Yong He & Binwu Zhang & Enyu Yao, 2005. "Weighted Inverse Minimum Spanning Tree Problems Under Hamming Distance," Journal of Combinatorial Optimization, Springer, vol. 9(1), pages 91-100, February.
    4. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    5. Longcheng Liu & Jianzhong Zhang, 2006. "Inverse maximum flow problems under the weighted Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 12(4), pages 395-408, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tayyebi, Javad & Aman, Massoud, 2014. "Note on “Inverse minimum cost flow problems under the weighted Hamming distance”," European Journal of Operational Research, Elsevier, vol. 234(3), pages 916-920.
    2. Souza, J.W.G. & Pereira, H.B.B. & Santos, A.A.B. & Senna, V. & Moret, M.A., 2014. "A new proposal for analyzing combustion process stability based on the Hamming distance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 301-306.
    3. Binwu Zhang & Xiucui Guan & Panos M. Pardalos & Chunyuan He, 2018. "An Algorithm for Solving the Shortest Path Improvement Problem on Rooted Trees Under Unit Hamming Distance," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 538-559, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longcheng Liu & Enyu Yao, 2013. "Weighted inverse maximum perfect matching problems under the Hamming distance," Journal of Global Optimization, Springer, vol. 55(3), pages 549-557, March.
    2. Xianyue Li & Xichao Shu & Huijing Huang & Jingjing Bai, 2019. "Capacitated partial inverse maximum spanning tree under the weighted Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1005-1018, November.
    3. Longcheng Liu & Jianzhong Zhang, 2006. "Inverse maximum flow problems under the weighted Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 12(4), pages 395-408, December.
    4. Binwu Zhang & Xiucui Guan & Panos M. Pardalos & Chunyuan He, 2018. "An Algorithm for Solving the Shortest Path Improvement Problem on Rooted Trees Under Unit Hamming Distance," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 538-559, August.
    5. Binwu Zhang & Jianzhong Zhang & Liqun Qi, 2006. "The shortest path improvement problems under Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 12(4), pages 351-361, December.
    6. Javad Tayyebi & Adrian Deaconu, 2019. "Inverse Generalized Maximum Flow Problems," Mathematics, MDPI, vol. 7(10), pages 1-15, September.
    7. Javad Tayyebi & Ali Reza Sepasian, 2020. "Partial inverse min–max spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1075-1091, November.
    8. Adrian Deaconu & Laura Ciupala, 2020. "Inverse Minimum Cut Problem with Lower and Upper Bounds," Mathematics, MDPI, vol. 8(9), pages 1-10, September.
    9. Rishabh Gupta & Qi Zhang, 2022. "Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2720-2735, September.
    10. Çiğdem Güler & Horst W. Hamacher, 2010. "Capacity inverse minimum cost flow problem," Journal of Combinatorial Optimization, Springer, vol. 19(1), pages 43-59, January.
    11. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    12. Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
    13. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    14. Gassner, Elisabeth, 2009. "Up- and downgrading the 1-center in a network," European Journal of Operational Research, Elsevier, vol. 198(2), pages 370-377, October.
    15. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    16. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    17. Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    18. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    19. Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
    20. Vincent Mousseau & Özgür Özpeynirci & Selin Özpeynirci, 2018. "Inverse multiple criteria sorting problem," Annals of Operations Research, Springer, vol. 267(1), pages 379-412, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:1:p:50-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.