IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v40y2020i4d10.1007_s10878-020-00656-3.html
   My bibliography  Save this article

Partial inverse min–max spanning tree problem

Author

Listed:
  • Javad Tayyebi

    (Birjand University of Technology)

  • Ali Reza Sepasian

    (Fasa University)

Abstract

This paper addresses a partial inverse combinatorial optimization problem, called the partial inverse min–max spanning tree problem. For a given weighted graph G and a forest F of the graph, the problem is to modify weights at minimum cost so that a bottleneck (min–max) spanning tree of G contains the forest. In this paper, the modifications are measured by the weighted Manhattan distance. The main contribution is to present two algorithms to solve the problem in polynomial time. This result is considerable because the partial inverse minimum spanning tree problem, which is closely related to this problem, is proved to be NP-hard in the literature. Since both the algorithms have the same worse-case complexity, some computational experiments are reported to compare their running time.

Suggested Citation

  • Javad Tayyebi & Ali Reza Sepasian, 2020. "Partial inverse min–max spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1075-1091, November.
  • Handle: RePEc:spr:jcomop:v:40:y:2020:i:4:d:10.1007_s10878-020-00656-3
    DOI: 10.1007/s10878-020-00656-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00656-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00656-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravindra K. Ahuja & James B. Orlin, 2001. "Inverse Optimization," Operations Research, INFORMS, vol. 49(5), pages 771-783, October.
    2. Yong He & Binwu Zhang & Enyu Yao, 2005. "Weighted Inverse Minimum Spanning Tree Problems Under Hamming Distance," Journal of Combinatorial Optimization, Springer, vol. 9(1), pages 91-100, February.
    3. Xianyue Li & Zhao Zhang & Ding-Zhu Du, 2018. "Partial inverse maximum spanning tree in which weight can only be decreased under $$l_p$$ l p -norm," Journal of Global Optimization, Springer, vol. 70(3), pages 677-685, March.
    4. Dorit S. Hochbaum, 2003. "Efficient Algorithms for the Inverse Spanning-Tree Problem," Operations Research, INFORMS, vol. 51(5), pages 785-797, October.
    5. Cai, Mao-Cheng & Duin, C.W. & Yang, Xiaoguang & Zhang, Jianzhong, 2008. "The partial inverse minimum spanning tree problem when weight increase is forbidden," European Journal of Operational Research, Elsevier, vol. 188(2), pages 348-353, July.
    6. Xiucui Guan & Panos Pardalos & Xia Zuo, 2015. "Inverse Max + Sum spanning tree problem by modifying the sum-cost vector under weighted $$l_\infty $$ l ∞ Norm," Journal of Global Optimization, Springer, vol. 61(1), pages 165-182, January.
    7. Chan, Timothy C.Y. & Lee, Taewoo, 2018. "Trade-off preservation in inverse multi-objective convex optimization," European Journal of Operational Research, Elsevier, vol. 270(1), pages 25-39.
    8. John R. Birge & Ali Hortaçsu & J. Michael Pavlin, 2017. "Inverse Optimization for the Recovery of Market Structure from Market Outcomes: An Application to the MISO Electricity Market," Operations Research, INFORMS, vol. 65(4), pages 837-855, August.
    9. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianyue Li & Ruowang Yang & Heping Zhang & Zhao Zhang, 2022. "Partial inverse maximum spanning tree problem under the Chebyshev norm," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3331-3350, December.
    2. Xianyue Li & Xichao Shu & Huijing Huang & Jingjing Bai, 2019. "Capacitated partial inverse maximum spanning tree under the weighted Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1005-1018, November.
    3. Xianyue Li & Zhao Zhang & Ruowang Yang & Heping Zhang & Ding-Zhu Du, 2020. "Approximation algorithms for capacitated partial inverse maximum spanning tree problem," Journal of Global Optimization, Springer, vol. 77(2), pages 319-340, June.
    4. Hui Wang & Xiucui Guan & Qiao Zhang & Binwu Zhang, 2021. "Capacitated inverse optimal value problem on minimum spanning tree under bottleneck Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 41(4), pages 861-887, May.
    5. Junhua Jia & Xiucui Guan & Qiao Zhang & Xinqiang Qian & Panos M. Pardalos, 2022. "Inverse max+sum spanning tree problem under weighted $$l_{\infty }$$ l ∞ norm by modifying max-weight vector," Journal of Global Optimization, Springer, vol. 84(3), pages 715-738, November.
    6. Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    7. Jonathan Yu-Meng Li, 2021. "Inverse Optimization of Convex Risk Functions," Management Science, INFORMS, vol. 67(11), pages 7113-7141, November.
    8. Binwu Zhang & Xiucui Guan & Panos M. Pardalos & Hui Wang & Qiao Zhang & Yan Liu & Shuyi Chen, 2021. "The lower bounded inverse optimal value problem on minimum spanning tree under unit $$l_{\infty }$$ l ∞ norm," Journal of Global Optimization, Springer, vol. 79(3), pages 757-777, March.
    9. Rishabh Gupta & Qi Zhang, 2022. "Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2720-2735, September.
    10. Kien Trung Nguyen & Nguyen Thanh Hung, 2020. "The inverse connected p-median problem on block graphs under various cost functions," Annals of Operations Research, Springer, vol. 292(1), pages 97-112, September.
    11. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    12. Xianyue Li & Zhao Zhang & Ding-Zhu Du, 2018. "Partial inverse maximum spanning tree in which weight can only be decreased under $$l_p$$ l p -norm," Journal of Global Optimization, Springer, vol. 70(3), pages 677-685, March.
    13. Xiucui Guan & Xinyan He & Panos M. Pardalos & Binwu Zhang, 2017. "Inverse max $$+$$ + sum spanning tree problem under Hamming distance by modifying the sum-cost vector," Journal of Global Optimization, Springer, vol. 69(4), pages 911-925, December.
    14. Shi Yu & Haoran Wang & Chaosheng Dong, 2020. "Learning Risk Preferences from Investment Portfolios Using Inverse Optimization," Papers 2010.01687, arXiv.org, revised Feb 2021.
    15. Susan Jia Xu & Mehdi Nourinejad & Xuebo Lai & Joseph Y. J. Chow, 2018. "Network Learning via Multiagent Inverse Transportation Problems," Service Science, INFORMS, vol. 52(6), pages 1347-1364, December.
    16. Bennet Gebken & Sebastian Peitz, 2021. "Inverse multiobjective optimization: Inferring decision criteria from data," Journal of Global Optimization, Springer, vol. 80(1), pages 3-29, May.
    17. Merve Bodur & Timothy C. Y. Chan & Ian Yihang Zhu, 2022. "Inverse Mixed Integer Optimization: Polyhedral Insights and Trust Region Methods," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1471-1488, May.
    18. Lindong Liu & Xiangtong Qi & Zhou Xu, 2024. "Stabilizing Grand Cooperation via Cost Adjustment: An Inverse Optimization Approach," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 635-656, March.
    19. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    20. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:40:y:2020:i:4:d:10.1007_s10878-020-00656-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.