IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v24y2016i2d10.1007_s11750-015-0404-x.html
   My bibliography  Save this article

A deterministic iterated local search algorithm for the vehicle routing problem with backhauls

Author

Listed:
  • José Brandão

    (Universidade do Minho
    University of Lisbon)

Abstract

The vehicle routing problem with backhauls is a variant of the classical capacitated vehicle routing problem. The difference is that it contains two distinct sets of customers: those who receive goods from the depot, who are called linehauls, and those who send goods to the depot, who are referred to as backhauls. In this paper, we describe a new deterministic iterated local search algorithm, which is tested using a large number of benchmark problems chosen from the literature. These computational tests have proven that this algorithm competes with the best known algorithms in terms of the quality of the solutions and at the same time, it is simpler and faster.

Suggested Citation

  • José Brandão, 2016. "A deterministic iterated local search algorithm for the vehicle routing problem with backhauls," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 445-465, July.
  • Handle: RePEc:spr:topjnl:v:24:y:2016:i:2:d:10.1007_s11750-015-0404-x
    DOI: 10.1007/s11750-015-0404-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-015-0404-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-015-0404-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Rejoinder on: Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 45-47, July.
    2. Ropke, Stefan & Pisinger, David, 2006. "A unified heuristic for a large class of Vehicle Routing Problems with Backhauls," European Journal of Operational Research, Elsevier, vol. 171(3), pages 750-775, June.
    3. Irnich, S. & Schneider, M. & Vigo, D., 2014. "Four Variants of the Vehicle Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63514, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    5. Paolo Toth & Daniele Vigo, 1997. "An Exact Algorithm for the Vehicle Routing Problem with Backhauls," Transportation Science, INFORMS, vol. 31(4), pages 372-385, November.
    6. Palhazi Cuervo, Daniel & Goos, Peter & Sörensen, Kenneth & Arráiz, Emely, 2014. "An iterated local search algorithm for the vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 237(2), pages 454-464.
    7. Gajpal, Yuvraj & Abad, P.L., 2009. "Multi-ant colony system (MACS) for a vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 196(1), pages 102-117, July.
    8. Goetschalckx, Marc & Jacobs-Blecha, Charlotte, 1989. "The vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 42(1), pages 39-51, September.
    9. Aristide Mingozzi & Simone Giorgi & Roberto Baldacci, 1999. "An Exact Method for the Vehicle Routing Problem with Backhauls," Transportation Science, INFORMS, vol. 33(3), pages 315-329, August.
    10. Salhi, Said & Wassan, Niaz & Hajarat, Mutaz, 2013. "The Fleet Size and Mix Vehicle Routing Problem with Backhauls: Formulation and Set Partitioning-based Heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 22-35.
    11. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    12. N Wassan, 2007. "Reactive tabu adaptive memory programming search for the vehicle routing problem with backhauls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1630-1641, December.
    13. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    14. Toth, Paolo & Vigo, Daniele, 1999. "A heuristic algorithm for the symmetric and asymmetric vehicle routing problems with backhauls," European Journal of Operational Research, Elsevier, vol. 113(3), pages 528-543, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    2. Dominguez, Oscar & Guimarans, Daniel & Juan, Angel A. & de la Nuez, Ignacio, 2016. "A Biased-Randomised Large Neighbourhood Search for the two-dimensional Vehicle Routing Problem with Backhauls," European Journal of Operational Research, Elsevier, vol. 255(2), pages 442-462.
    3. Bortfeldt, Andreas & Hahn, Thomas & Männel, Dirk & Mönch, Lars, 2015. "Hybrid algorithms for the vehicle routing problem with clustered backhauls and 3D loading constraints," European Journal of Operational Research, Elsevier, vol. 243(1), pages 82-96.
    4. Palhazi Cuervo, Daniel & Goos, Peter & Sörensen, Kenneth & Arráiz, Emely, 2014. "An iterated local search algorithm for the vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 237(2), pages 454-464.
    5. Queiroga, Eduardo & Frota, Yuri & Sadykov, Ruslan & Subramanian, Anand & Uchoa, Eduardo & Vidal, Thibaut, 2020. "On the exact solution of vehicle routing problems with backhauls," European Journal of Operational Research, Elsevier, vol. 287(1), pages 76-89.
    6. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    7. Phuong Khanh Nguyen & Teodor Gabriel Crainic & Michel Toulouse, 2017. "Multi-trip pickup and delivery problem with time windows and synchronization," Annals of Operations Research, Springer, vol. 253(2), pages 899-934, June.
    8. Yang, Senyan & Ning, Lianju & Shang, Pan & (Carol) Tong, Lu, 2020. "Augmented Lagrangian relaxation approach for logistics vehicle routing problem with mixed backhauls and time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    9. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    10. S Mitra, 2008. "A parallel clustering technique for the vehicle routing problem with split deliveries and pickups," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1532-1546, November.
    11. Julio C. Londoño & Rafael D. Tordecilla & Leandro do C. Martins & Angel A. Juan, 2021. "A biased-randomized iterated local search for the vehicle routing problem with optional backhauls," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 387-416, July.
    12. N Wassan, 2007. "Reactive tabu adaptive memory programming search for the vehicle routing problem with backhauls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1630-1641, December.
    13. Gajpal, Yuvraj & Abad, P.L., 2009. "Multi-ant colony system (MACS) for a vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 196(1), pages 102-117, July.
    14. José Brandão, 2017. "Iterated Local Search Algorithm for the Vehicle Routing Problem with Backhauls and Soft Time Windows," Working Papers REM 2017/10, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    15. Lei, Jieyu & Che, Ada & Van Woensel, Tom, 2024. "Collection-disassembly-delivery problem of disassembly centers in a reverse logistics network," European Journal of Operational Research, Elsevier, vol. 313(2), pages 478-493.
    16. Henriette Koch & Andreas Bortfeldt & Gerhard Wäscher, 2018. "A hybrid algorithm for the vehicle routing problem with backhauls, time windows and three-dimensional loading constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1029-1075, October.
    17. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    18. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    19. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.
    20. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:24:y:2016:i:2:d:10.1007_s11750-015-0404-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.