IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v203y2010i3p698-705.html
   My bibliography  Save this article

Induction over constrained strategic agents

Author

Listed:
  • Boylu, Fidan
  • Aytug, Haldun
  • Koehler, Gary J.

Abstract

In a new learning paradigm called Induction over Strategic Agents, the principal anticipates possible alteration of attributes by agents wishing to achieve a positive classification. In many cases, agents are constrained on how an attribute can be modified. For example, attribute values may have upper and lower bounds or they may need to belong to a certain set of possible values such as binary valued attributes like "pays bills on time" or be linearly dependent like the relationships between accounting entries in an income statement. In this paper, we explore Induction over Strategic Agents for a class of problems where attributes are binary values.

Suggested Citation

  • Boylu, Fidan & Aytug, Haldun & Koehler, Gary J., 2010. "Induction over constrained strategic agents," European Journal of Operational Research, Elsevier, vol. 203(3), pages 698-705, June.
  • Handle: RePEc:eee:ejores:v:203:y:2010:i:3:p:698-705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00667-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
    2. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vijay Mookerjee & Radha Mookerjee & Alain Bensoussan & Wei T. Yue, 2011. "When Hackers Talk: Managing Information Security Under Variable Attack Rates and Knowledge Dissemination," Information Systems Research, INFORMS, vol. 22(3), pages 606-623, September.
    2. Asunur Cezar & Srinivasan Raghunathan & Sumit Sarkar, 2020. "Adversarial Classification: Impact of Agents’ Faking Cost on Firms and Agents," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2789-2807, December.
    3. Yuanfeng Cai & Zhengrui Jiang & Vijay Mookerjee, 2017. "How to Deal with Liars? Designing Intelligent Rule-Based Expert Systems to Increase Accuracy or Reduce Cost," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 268-286, May.
    4. Zhang, Juheng & Aytug, Haldun, 2016. "Comparison of imputation methods for discriminant analysis with strategically hidden data," European Journal of Operational Research, Elsevier, vol. 255(2), pages 522-530.
    5. Juheng Zhang & Haldun Aytug & Gary J. Koehler, 2014. "Research Note —Discriminant Analysis with Strategically Manipulated Data," Information Systems Research, INFORMS, vol. 25(3), pages 654-662, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    2. Lean Yu & Xinxie Li & Ling Tang & Zongyi Zhang & Gang Kou, 2015. "Social credit: a comprehensive literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-18, December.
    3. Hoffmann, F. & Baesens, B. & Mues, C. & Van Gestel, T. & Vanthienen, J., 2007. "Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 540-555, February.
    4. Palocsay, Susan W. & Stevens, Scott P. & Brookshire, Robert G. & Sacco, William J. & Copes, Wayne S. & Buckman, Robert F. & Smith, J. Stanley, 1996. "Using neural networks for trauma outcome evaluation," European Journal of Operational Research, Elsevier, vol. 93(2), pages 369-386, September.
    5. Yu-Shan Chen & Ke-Chiun Chang, 2009. "Using neural network to analyze the influence of the patent performance upon the market value of the US pharmaceutical companies," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(3), pages 637-655, September.
    6. Kwon, He-Boong & Lee, Jooh, 2019. "Exploring the differential impact of environmental sustainability, operational efficiency, and corporate reputation on market valuation in high-tech-oriented firms," International Journal of Production Economics, Elsevier, vol. 211(C), pages 1-14.
    7. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    8. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    9. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    10. Guo, Mengzhuo & Zhang, Qingpeng & Liao, Xiuwu & Chen, Frank Youhua & Zeng, Daniel Dajun, 2021. "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega, Elsevier, vol. 101(C).
    11. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
    12. J.E. Boritz & D.B. Kennedy & Augusto de Miranda e Albuquerque, 1995. "Predicting Corporate Failure Using a Neural Network Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 4(2), pages 95-111, June.
    13. Wolfgang Karl Härdle & Dedy Dwi Prastyo, 2013. "Default Risk Calculation based on Predictor Selection for the Southeast Asian Industry," SFB 649 Discussion Papers SFB649DP2013-037, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    14. Mark T. Leung & An-Sing Chen, 2005. "Performance evaluation of neural network architectures: the case of predicting foreign exchange correlations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 403-420.
    15. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    16. Xiao Fang & Olivia R. Liu Sheng & Paulo Goes, 2013. "When Is the Right Time to Refresh Knowledge Discovered from Data?," Operations Research, INFORMS, vol. 61(1), pages 32-44, February.
    17. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    18. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
    19. Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
    20. S. Balcaen & H. Ooghe, 2004. "Alternative methodologies in studies on business failure: do they produce better results than the classical statistical methods?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/249, Ghent University, Faculty of Economics and Business Administration.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:203:y:2010:i:3:p:698-705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.