IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v17y2020i4d10.1007_s10287-019-00351-7.html
   My bibliography  Save this article

Dynamic portfolio allocation in goals-based wealth management

Author

Listed:
  • Sanjiv R. Das

    (Santa Clara University)

  • Daniel Ostrov

    (Santa Clara University)

  • Anand Radhakrishnan

    (Franklin Templeton Investments)

  • Deep Srivastav

    (Franklin Templeton Investments)

Abstract

We report a dynamic programming algorithm which, given a set of efficient (or even inefficient) portfolios, constructs an optimal portfolio trading strategy that maximizes the probability of attaining an investor’s specified target wealth at the end of a designated time horizon. Our algorithm also accommodates periodic infusions or withdrawals of cash with no degradation to the dynamic portfolio’s performance or runtime. We explore the sensitivity of the terminal wealth distribution to restricting the segment of the efficient frontier available to the investor. Since our algorithm’s optimal strategy can be on the efficient frontier and is driven by an investor’s wealth and goals, it soundly beats the performance of target date funds in attaining investors’ goals. These optimal goals-based wealth management strategies are useful for independent financial advisors to implement behavioral-based FinTech offerings and for robo-advisors.

Suggested Citation

  • Sanjiv R. Das & Daniel Ostrov & Anand Radhakrishnan & Deep Srivastav, 2020. "Dynamic portfolio allocation in goals-based wealth management," Computational Management Science, Springer, vol. 17(4), pages 613-640, December.
  • Handle: RePEc:spr:comgts:v:17:y:2020:i:4:d:10.1007_s10287-019-00351-7
    DOI: 10.1007/s10287-019-00351-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-019-00351-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-019-00351-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    4. Sid Browne, 2000. "Risk-Constrained Dynamic Active Portfolio Management," Management Science, INFORMS, vol. 46(9), pages 1188-1199, September.
    5. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    6. Sid Browne, 1997. "Survival and Growth with a Liability: Optimal Portfolio Strategies in Continuous Time," Mathematics of Operations Research, INFORMS, vol. 22(2), pages 468-493, May.
    7. Richard H. Thaler, 2008. "Mental Accounting and Consumer Choice," Marketing Science, INFORMS, vol. 27(1), pages 15-25, 01-02.
    8. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    9. Shefrin, Hersh & Statman, Meir, 1985. "The Disposition to Sell Winners Too Early and Ride Losers Too Long: Theory and Evidence," Journal of Finance, American Finance Association, vol. 40(3), pages 777-790, July.
    10. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    11. Shefrin, Hersh & Statman, Meir, 2000. "Behavioral Portfolio Theory," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(2), pages 127-151, June.
    12. Das, Sanjiv & Markowitz, Harry & Scheid, Jonathan & Statman, Meir, 2010. "Portfolio Optimization with Mental Accounts," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(2), pages 311-334, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denault, Michel & Simonato, Jean-Guy, 2022. "A note on a dynamic goal-based wealth management problem," Finance Research Letters, Elsevier, vol. 46(PB).
    2. Tessa Bauman & Bruno Gav{s}perov & Stjepan Beguv{s}i'c & Zvonko Kostanjv{c}ar, 2023. "Deep Reinforcement Learning for Robust Goal-Based Wealth Management," Papers 2307.13501, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    2. Das, Sanjiv R. & Ostrov, Daniel & Radhakrishnan, Anand & Srivastav, Deep, 2022. "Dynamic optimization for multi-goals wealth management," Journal of Banking & Finance, Elsevier, vol. 140(C).
    3. Francisco Gomes & Michael Haliassos & Tarun Ramadorai, 2021. "Household Finance," Journal of Economic Literature, American Economic Association, vol. 59(3), pages 919-1000, September.
    4. Kuo-Hwa Chang & Michael Nayat Young, 2019. "Portfolios Optimizations of Behavioral Stocks with Perception Probability Weightings," Annals of Economics and Finance, Society for AEF, vol. 20(2), pages 817-845, November.
    5. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    6. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    7. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    8. Blake, David & Cairns, Andrew & Dowd, Kevin, 2008. "Turning pension plans into pension planes: What investment strategy designers of defined contribution pension plans can learn from commercial aircraft designers," MPRA Paper 33749, University Library of Munich, Germany.
    9. Sanjiv R. Das & Daniel Ostrov & Aviva Casanova & Anand Radhakrishnan & Deep Srivastav, 2021. "Combining Investment and Tax Strategies for Optimizing Lifetime Solvency under Uncertain Returns and Mortality," JRFM, MDPI, vol. 14(7), pages 1-25, June.
    10. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    11. Gerrard, Russell & Haberman, Steven & Vigna, Elena, 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 321-342, October.
    12. Pfiffelmann, Marie & Roger, Tristan & Bourachnikova, Olga, 2016. "When Behavioral Portfolio Theory meets Markowitz theory," Economic Modelling, Elsevier, vol. 53(C), pages 419-435.
    13. Zhao, Hui & Rong, Ximin, 2012. "Portfolio selection problem with multiple risky assets under the constant elasticity of variance model," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 179-190.
    14. Anatoliy Swishchuk, 2021. "Merton Investment Problems in Finance and Insurance for the Hawkes-Based Models," Risks, MDPI, vol. 9(6), pages 1-13, June.
    15. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    16. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    17. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    18. Servaas van Bilsen & Roger J. A. Laeven & Theo E. Nijman, 2020. "Consumption and Portfolio Choice Under Loss Aversion and Endogenous Updating of the Reference Level," Management Science, INFORMS, vol. 66(9), pages 3927-3955, September.
    19. J. Cerda-Hernandez & A. Sikov & A. Ramos, 2022. "An optimal investment strategy aimed at maximizing the expected utility across all intermediate capital levels," Papers 2207.02947, arXiv.org, revised Jun 2024.
    20. Lahav, Yaron & Benzion, Uri, 2022. "What happens to investment choices when interest rates change? An experimental study," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 471-481.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:17:y:2020:i:4:d:10.1007_s10287-019-00351-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.