IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v94y1997i1d10.1023_a1022624122832.html
   My bibliography  Save this article

On Facets of Knapsack Equality Polytopes

Author

Listed:
  • E. K. Lee

    (Columbia University)

Abstract

The 0/1 knapsack equality polytope is, by definition, the convex hull of 0/1 solutions of a single linear equation. A special form of this polytope, where the defining linear equation has nonnegative integer coefficients and the number of variables having coefficient one exceeds the right-hand side, is considered. Equality constraints of this form arose in a real-world application of integer programming to a truck dispatching scheduling problem. Families of facet defining inequalities for this polytope are identified, and complete linear inequality representations are obtained for some classes of polytopes.

Suggested Citation

  • E. K. Lee, 1997. "On Facets of Knapsack Equality Polytopes," Journal of Optimization Theory and Applications, Springer, vol. 94(1), pages 223-239, July.
  • Handle: RePEc:spr:joptap:v:94:y:1997:i:1:d:10.1023_a:1022624122832
    DOI: 10.1023/A:1022624122832
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022624122832
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022624122832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eitan Zemel, 1989. "Easily Computable Facets of the Knapsack Polytope," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 760-764, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Hojny & Tristan Gally & Oliver Habeck & Hendrik Lüthen & Frederic Matter & Marc E. Pfetsch & Andreas Schmitt, 2020. "Knapsack polytopes: a survey," Annals of Operations Research, Springer, vol. 292(1), pages 469-517, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaparis, Konstantinos & Letchford, Adam N., 2008. "Local and global lifted cover inequalities for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 186(1), pages 91-103, April.
    2. Alper Atamtürk & Laurent Flindt Muller & David Pisinger, 2013. "Separation and Extension of Cover Inequalities for Conic Quadratic Knapsack Constraints with Generalized Upper Bounds," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 420-431, August.
    3. Christopher Hojny & Tristan Gally & Oliver Habeck & Hendrik Lüthen & Frederic Matter & Marc E. Pfetsch & Andreas Schmitt, 2020. "Knapsack polytopes: a survey," Annals of Operations Research, Springer, vol. 292(1), pages 469-517, September.
    4. Yongjia Song & James R. Luedtke & Simge Küçükyavuz, 2014. "Chance-Constrained Binary Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 735-747, November.
    5. Zonghao Gu & George L. Nemhauser & Martin W. P. Savelsbergh, 1999. "Lifted Cover Inequalities for 0-1 Integer Programs: Complexity," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 117-123, February.
    6. Shanshan Wang & Jinlin Li & Sanjay Mehrotra, 2021. "Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room Planning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1661-1677, October.
    7. Escudero, L. F. & Garin, A. & Perez, G., 1999. "O(n log n) procedures for tightening cover inequalities," European Journal of Operational Research, Elsevier, vol. 113(3), pages 676-687, March.
    8. Agostinho Agra & Cristina Requejo & Eulália Santos, 2016. "Implicit cover inequalities," Journal of Combinatorial Optimization, Springer, vol. 31(3), pages 1111-1129, April.
    9. Jean-François Côté & Michel Gendreau & Jean-Yves Potvin, 2014. "An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints," Operations Research, INFORMS, vol. 62(5), pages 1126-1141, October.
    10. Alper Atamtürk, 2005. "Cover and Pack Inequalities for (Mixed) Integer Programming," Annals of Operations Research, Springer, vol. 139(1), pages 21-38, October.
    11. Wei-Kun Chen & Liang Chen & Yu-Hong Dai, 2023. "Lifting for the integer knapsack cover polyhedron," Journal of Global Optimization, Springer, vol. 86(1), pages 205-249, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:94:y:1997:i:1:d:10.1023_a:1022624122832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.