IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v175y2006i1p296-317.html
   My bibliography  Save this article

Heuristics and augmented neural networks for task scheduling with non-identical machines

Author

Listed:
  • Agarwal, Anurag
  • Colak, Selcuk
  • Jacob, Varghese S.
  • Pirkul, Hasan

Abstract

No abstract is available for this item.

Suggested Citation

  • Agarwal, Anurag & Colak, Selcuk & Jacob, Varghese S. & Pirkul, Hasan, 2006. "Heuristics and augmented neural networks for task scheduling with non-identical machines," European Journal of Operational Research, Elsevier, vol. 175(1), pages 296-317, November.
  • Handle: RePEc:eee:ejores:v:175:y:2006:i:1:p:296-317
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00430-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabuncuoglu, Ihsan & Gurgun, Burckaan, 1996. "A neural network model for scheduling problems," European Journal of Operational Research, Elsevier, vol. 93(2), pages 288-299, September.
    2. Kate A. Smith, 1999. "Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 15-34, February.
    3. Satake, Tsuyoshi & Morikawa, Katsumi & Nakamura, Nobuto, 1994. "Neural network approach for minimizing the makespan of the general job-shop," International Journal of Production Economics, Elsevier, vol. 33(1-3), pages 67-74, January.
    4. Stephen C. Graves, 1981. "A Review of Production Scheduling," Operations Research, INFORMS, vol. 29(4), pages 646-675, August.
    5. Agarwal, Anurag & Pirkul, Hasan & Jacob, Varghese S., 2003. "Augmented neural networks for task scheduling," European Journal of Operational Research, Elsevier, vol. 151(3), pages 481-502, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anurag Agarwal & Varghese S. Jacob & Hasan Pirkul, 2006. "An Improved Augmented Neural-Network Approach for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 119-128, February.
    2. Raaymakers, W. H. M. & Weijters, A. J. M. M., 2003. "Makespan estimation in batch process industries: A comparison between regression analysis and neural networks," European Journal of Operational Research, Elsevier, vol. 145(1), pages 14-30, February.
    3. Selcuk Colak & Anurag Agarwal, 2005. "Non‐greedy heuristics and augmented neural networks for the open‐shop scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 631-644, October.
    4. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    5. Lingye Tan & Tiong Lee Kong & Ziyang Zhang & Ahmed Sayed M. Metwally & Shubham Sharma & Kanta Prasad Sharma & Sayed M. Eldin & Dominik Zimon, 2023. "Scheduling and Controlling Production in an Internet of Things Environment for Industry 4.0: An Analysis and Systematic Review of Scientific Metrological Data," Sustainability, MDPI, vol. 15(9), pages 1-37, May.
    6. Agarwal, Anurag & Pirkul, Hasan & Jacob, Varghese S., 2003. "Augmented neural networks for task scheduling," European Journal of Operational Research, Elsevier, vol. 151(3), pages 481-502, December.
    7. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    8. Christoph Hertrich & Martin Skutella, 2023. "Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1079-1097, September.
    9. Khalil Tliba & Thierno M. L. Diallo & Olivia Penas & Romdhane Ben Khalifa & Noureddine Ben Yahia & Jean-Yves Choley, 2023. "Digital twin-driven dynamic scheduling of a hybrid flow shop," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2281-2306, June.
    10. Tang, Christopher S., 2010. "A review of marketing-operations interface models: From co-existence to coordination and collaboration," International Journal of Production Economics, Elsevier, vol. 125(1), pages 22-40, May.
    11. Anurag Agarwal, 2009. "Theoretical insights into the augmented-neural-network approach for combinatorial optimization," Annals of Operations Research, Springer, vol. 168(1), pages 101-117, April.
    12. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    13. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    14. Seifert, Ralf W. & Morito, Susumu, 2001. "Cooperative dispatching - exploiting the flexibility of an FMS by means of incremental optimization," European Journal of Operational Research, Elsevier, vol. 129(1), pages 116-133, February.
    15. Golenko-Ginzburg, Dimitri & Kesler, Shmuel & Landsman, Zinoviy, 1995. "Industrial job-shop scheduling with random operations and different priorities," International Journal of Production Economics, Elsevier, vol. 40(2-3), pages 185-195, August.
    16. Mili Mehrotra & William Schmidt, 2021. "The Value of Supply Chain Disruption Duration Information," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3015-3035, September.
    17. Justin J. Boutilier & Timothy C. Y. Chan, 2023. "Introducing and Integrating Machine Learning in an Operations Research Curriculum: An Application-Driven Course," INFORMS Transactions on Education, INFORMS, vol. 23(2), pages 64-83, January.
    18. Vineet Jain & Tilak Raj, 2018. "An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly shop: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1302-1314, December.
    19. Lindau, Roger A., 1997. "Automatic data capture and its impact on productivity," International Journal of Production Economics, Elsevier, vol. 52(1-2), pages 91-103, October.
    20. Huang, Hai-Jun & Xu, Gang, 1998. "Aggregate scheduling and network solving of multi-stage and multi-item manufacturing systems," European Journal of Operational Research, Elsevier, vol. 105(1), pages 52-65, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:175:y:2006:i:1:p:296-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.