IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v152y2004i1p180-194.html
   My bibliography  Save this article

A fuzzy robust scheduling approach for product development projects

Author

Listed:
  • Wang, Juite

Abstract

No abstract is available for this item.

Suggested Citation

  • Wang, Juite, 2004. "A fuzzy robust scheduling approach for product development projects," European Journal of Operational Research, Elsevier, vol. 152(1), pages 180-194, January.
  • Handle: RePEc:eee:ejores:v:152:y:2004:i:1:p:180-194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00701-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lootsma, F. A., 1989. "Stochastic and fuzzy," European Journal of Operational Research, Elsevier, vol. 43(2), pages 174-183, November.
    2. Richard L. Daniels & Panagiotis Kouvelis, 1995. "Robust Scheduling to Hedge Against Processing Time Uncertainty in Single-Stage Production," Management Science, INFORMS, vol. 41(2), pages 363-376, February.
    3. Ishibuchi, Hisao & Yamamoto, Naohisa & Misaki, Shinta & Tanaka, Hideo, 1994. "Local search algorithms for flow shop scheduling with fuzzy due-dates," International Journal of Production Economics, Elsevier, vol. 33(1-3), pages 53-66, January.
    4. Kolisch, Rainer & Sprecher, Arno, 1997. "PSPLIB - A project scheduling problem library : OR Software - ORSEP Operations Research Software Exchange Program," European Journal of Operational Research, Elsevier, vol. 96(1), pages 205-216, January.
    5. Stephen C. Graves, 1981. "A Review of Production Scheduling," Operations Research, INFORMS, vol. 29(4), pages 646-675, August.
    6. Giachetti, Ronald E. & Young, Robert E. & Roggatz, Axel & Eversheim, Walter & Perrone, Giovanni, 1997. "A methodology for the reduction of imprecision in the engineering process," European Journal of Operational Research, Elsevier, vol. 100(2), pages 277-292, July.
    7. Erik Demeulemeester & Willy Herroelen, 1992. "A Branch-and-Bound Procedure for the Multiple Resource-Constrained Project Scheduling Problem," Management Science, INFORMS, vol. 38(12), pages 1803-1818, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    2. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    3. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    4. Wang, Juite & Hwang, W.-L., 2007. "A fuzzy set approach for R&D portfolio selection using a real options valuation model," Omega, Elsevier, vol. 35(3), pages 247-257, June.
    5. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    6. Wang, Juite & Shu, Yun-Feng, 2007. "A possibilistic decision model for new product supply chain design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1044-1061, March.
    7. Salim Rostami & Stefan Creemers & Roel Leus, 2018. "New strategies for stochastic resource-constrained project scheduling," Journal of Scheduling, Springer, vol. 21(3), pages 349-365, June.
    8. Bhaskar, Tarun & Pal, Manabendra N. & Pal, Asim K., 2011. "A heuristic method for RCPSP with fuzzy activity times," European Journal of Operational Research, Elsevier, vol. 208(1), pages 57-66, January.
    9. Yagub Alipouri & Mohammad Hassan Sebt & Abdollah Ardeshir & Mohammad Hossein Fazel Zarandi, 2020. "A mixed-integer linear programming model for solving fuzzy stochastic resource constrained project scheduling problem," Operational Research, Springer, vol. 20(1), pages 197-217, March.
    10. Wong, Bo K. & Lai, Vincent S., 2011. "A survey of the application of fuzzy set theory in production and operations management: 1998-2009," International Journal of Production Economics, Elsevier, vol. 129(1), pages 157-168, January.
    11. Wang, Juite, 2005. "Constraint-based schedule repair for product development projects with time-limited constraints," International Journal of Production Economics, Elsevier, vol. 95(3), pages 399-414, March.
    12. Samaniego Alcántar Ángel, 2010. "Incertidumbre en los proyectos de investigación y desarrollo (I+D). Un estudio de la literatura," Contaduría y Administración, Accounting and Management, vol. 55(3), pages 65-81, septiembr.
    13. Zhao, Mingxuan & Zhou, Jian & Wang, Ke & Pantelous, Athanasios A., 2023. "Project scheduling problem with fuzzy activity durations: A novel operational law based solution framework," European Journal of Operational Research, Elsevier, vol. 306(2), pages 519-534.
    14. Zhang, Qingyu & Vonderembse, Mark A. & Cao, Mei, 2009. "Product concept and prototype flexibility in manufacturing: Implications for customer satisfaction," European Journal of Operational Research, Elsevier, vol. 194(1), pages 143-154, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubois, Didier & Fargier, Helene & Fortemps, Philippe, 2003. "Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge," European Journal of Operational Research, Elsevier, vol. 147(2), pages 231-252, June.
    2. Dayal Madhukar & Verma, Sanjay, 2014. "Breadth-first and Best-first Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2014-10-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. D. Debels & M. Vanhoucke, 2005. "A Decomposition-Based Heuristic For The Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/293, Ghent University, Faculty of Economics and Business Administration.
    4. Van Eynde, Rob & Vanhoucke, Mario, 2022. "New summary measures and datasets for the multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 853-868.
    5. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
    6. Lambrechts, Olivier & Demeulemeester, Erik & Herroelen, Willy, 2008. "A tabu search procedure for developing robust predictive project schedules," International Journal of Production Economics, Elsevier, vol. 111(2), pages 493-508, February.
    7. Valls, Vicente & Quintanilla, Sacramento & Ballestin, Francisco, 2003. "Resource-constrained project scheduling: A critical activity reordering heuristic," European Journal of Operational Research, Elsevier, vol. 149(2), pages 282-301, September.
    8. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    9. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    10. Khalil Tliba & Thierno M. L. Diallo & Olivia Penas & Romdhane Ben Khalifa & Noureddine Ben Yahia & Jean-Yves Choley, 2023. "Digital twin-driven dynamic scheduling of a hybrid flow shop," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2281-2306, June.
    11. Tang, Christopher S., 2010. "A review of marketing-operations interface models: From co-existence to coordination and collaboration," International Journal of Production Economics, Elsevier, vol. 125(1), pages 22-40, May.
    12. Rainer Kolisch & Andreas Drexl, 1996. "Adaptive search for solving hard project scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(1), pages 23-40, February.
    13. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    14. Sprecher, Arno & Drexl, Andreas, 1996. "Minimal delaying alternatives and semi-active timetabling in resource-constrained project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 426, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. Jian Yang & Gang Yu, 2002. "On the Robust Single Machine Scheduling Problem," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 17-33, March.
    16. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2005. "Justification and RCPSP: A technique that pays," European Journal of Operational Research, Elsevier, vol. 165(2), pages 375-386, September.
    17. Drexl, Andreas & Kolisch, Rainer & Sprecher, Arno, 1995. "Neuere Entwicklungen in der computergestützten Projektplanung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 379, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    18. Vairaktarakis, George L., 2000. "Robust multi-item newsboy models with a budget constraint," International Journal of Production Economics, Elsevier, vol. 66(3), pages 213-226, July.
    19. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1996. "Project Scheduling under Resource and Mode Identity Constraints. Part I: Model, Complexity Status, and Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 387, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:152:y:2004:i:1:p:180-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.