IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v95y2005i3p399-414.html
   My bibliography  Save this article

Constraint-based schedule repair for product development projects with time-limited constraints

Author

Listed:
  • Wang, Juite

Abstract

No abstract is available for this item.

Suggested Citation

  • Wang, Juite, 2005. "Constraint-based schedule repair for product development projects with time-limited constraints," International Journal of Production Economics, Elsevier, vol. 95(3), pages 399-414, March.
  • Handle: RePEc:eee:proeco:v:95:y:2005:i:3:p:399-414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(04)00044-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kolisch, Rainer & Padman, Rema, 1997. "An integrated survey of project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 463, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Luh, Peter B. & Liu, Feng & Moser, Bryan, 1999. "Scheduling of design projects with uncertain number of iterations," European Journal of Operational Research, Elsevier, vol. 113(3), pages 575-592, March.
    3. Nuijten, W. P. M. & Aarts, E. H. L., 1996. "A computational study of constraint satisfaction for multiple capacitated job shop scheduling," European Journal of Operational Research, Elsevier, vol. 90(2), pages 269-284, April.
    4. Mori, Masao & Tseng, Ching Chih, 1997. "A genetic algorithm for multi-mode resource constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 100(1), pages 134-141, July.
    5. Kolisch, Rainer & Sprecher, Arno, 1997. "PSPLIB - A project scheduling problem library : OR Software - ORSEP Operations Research Software Exchange Program," European Journal of Operational Research, Elsevier, vol. 96(1), pages 205-216, January.
    6. Wang, Juite, 2004. "A fuzzy robust scheduling approach for product development projects," European Journal of Operational Research, Elsevier, vol. 152(1), pages 180-194, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yangyang Liang & Nanfang Cui & Tian Wang & Erik Demeulemeester, 2019. "Robust resource-constrained max-NPV project scheduling with stochastic activity duration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 219-254, March.
    2. Lee, Heejung & Suh, Hyo-Won, 2008. "Estimating the duration of stochastic workflow for product development process," International Journal of Production Economics, Elsevier, vol. 111(1), pages 105-117, January.
    3. Jürgen Kuster & Dietmar Jannach & Gerhard Friedrich, 2010. "Applying Local Rescheduling in response to schedule disruptions," Annals of Operations Research, Springer, vol. 180(1), pages 265-282, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.
    2. Dayal Madhukar & Verma, Sanjay, 2014. "Breadth-first and Best-first Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2014-10-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Alfredo S. Ramos & Pablo A. Miranda-Gonzalez & Samuel Nucamendi-Guillén & Elias Olivares-Benitez, 2023. "A Formulation for the Stochastic Multi-Mode Resource-Constrained Project Scheduling Problem Solved with a Multi-Start Iterated Local Search Metaheuristic," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    4. Valls, Vicente & Quintanilla, Sacramento & Ballestin, Francisco, 2003. "Resource-constrained project scheduling: A critical activity reordering heuristic," European Journal of Operational Research, Elsevier, vol. 149(2), pages 282-301, September.
    5. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    6. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    7. Zhang, Qingyu & Vonderembse, Mark A. & Cao, Mei, 2009. "Product concept and prototype flexibility in manufacturing: Implications for customer satisfaction," European Journal of Operational Research, Elsevier, vol. 194(1), pages 143-154, April.
    8. Kumar, Akhilesh & Prakash & Tiwari, M.K. & Shankar, Ravi & Baveja, Alok, 2006. "Solving machine-loading problem of a flexible manufacturing system with constraint-based genetic algorithm," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1043-1069, December.
    9. Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.
    10. Ulusoy, Gunduz & Cebelli, Serkan, 2000. "An equitable approach to the payment scheduling problem in project management," European Journal of Operational Research, Elsevier, vol. 127(2), pages 262-278, December.
    11. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    12. Zhu, Xia & Ruiz, Rubén & Li, Shiyu & Li, Xiaoping, 2017. "An effective heuristic for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 257(3), pages 746-762.
    13. Viana, Ana & Pinho de Sousa, Jorge, 2000. "Using metaheuristics in multiobjective resource constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 120(2), pages 359-374, January.
    14. Neumann, Anas & Hajji, Adnene & Rekik, Monia & Pellerin, Robert, 2022. "A model for advanced planning systems dedicated to the Engineer-To-Order context," International Journal of Production Economics, Elsevier, vol. 252(C).
    15. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    16. Dayal Madhukar & Verma, Sanjay, 2015. "Multi-processor Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2015-03-25, Indian Institute of Management Ahmedabad, Research and Publication Department.
    17. Chen, Haoxun & Luh, Peter B., 2003. "An alternative framework to Lagrangian relaxation approach for job shop scheduling," European Journal of Operational Research, Elsevier, vol. 149(3), pages 499-512, September.
    18. Yagub Alipouri & Mohammad Hassan Sebt & Abdollah Ardeshir & Mohammad Hossein Fazel Zarandi, 2020. "A mixed-integer linear programming model for solving fuzzy stochastic resource constrained project scheduling problem," Operational Research, Springer, vol. 20(1), pages 197-217, March.
    19. Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.
    20. Mick Van Den Eeckhout & Broos Maenhout & Mario Vanhoucke, 2020. "Mode generation rules to define activity flexibility for the integrated project staffing problem with discrete time/resource trade-offs," Annals of Operations Research, Springer, vol. 292(1), pages 133-160, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:95:y:2005:i:3:p:399-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.