IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v116y1999i1p183-193.html
   My bibliography  Save this article

Minimizing the weighted number of tardy jobs and maximum tardiness in relocation problem with due date constraints

Author

Listed:
  • Lin, B. M. T.
  • Cheng, T. C. E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Lin, B. M. T. & Cheng, T. C. E., 1999. "Minimizing the weighted number of tardy jobs and maximum tardiness in relocation problem with due date constraints," European Journal of Operational Research, Elsevier, vol. 116(1), pages 183-193, July.
  • Handle: RePEc:eee:ejores:v:116:y:1999:i:1:p:183-193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(98)00196-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Michael Moore, 1968. "An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs," Management Science, INFORMS, vol. 15(1), pages 102-109, September.
    2. Kaplan, Edward H. & Amir, Amihood, 1988. "A fast feasibility test for relocation problems," European Journal of Operational Research, Elsevier, vol. 35(2), pages 201-206, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting-Chun Lo & Bertrand M. T. Lin, 2021. "Relocation Scheduling in a Two-Machine Flow Shop with Resource Recycling Operations," Mathematics, MDPI, vol. 9(13), pages 1-35, June.
    2. Lin, B.M.T. & Liu, S.T., 2008. "Maximizing the reward in the relocation problem with generalized due dates," International Journal of Production Economics, Elsevier, vol. 115(1), pages 55-63, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    2. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    3. Janiak, Adam & Krysiak, Tomasz, 2012. "Scheduling jobs with values dependent on their completion times," International Journal of Production Economics, Elsevier, vol. 135(1), pages 231-241.
    4. Erenay, Fatih Safa & Sabuncuoglu, Ihsan & Toptal, Aysegül & Tiwari, Manoj Kumar, 2010. "New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 89-98, February.
    5. Ting-Chun Lo & Bertrand M. T. Lin, 2021. "Relocation Scheduling in a Two-Machine Flow Shop with Resource Recycling Operations," Mathematics, MDPI, vol. 9(13), pages 1-35, June.
    6. Baptiste, Philippe & Peridy, Laurent & Pinson, Eric, 2003. "A branch and bound to minimize the number of late jobs on a single machine with release time constraints," European Journal of Operational Research, Elsevier, vol. 144(1), pages 1-11, January.
    7. Sachchida Nand Chaurasia & Shyam Sundar & Alok Singh, 2017. "Hybrid metaheuristic approaches for the single machine total stepwise tardiness problem with release dates," Operational Research, Springer, vol. 17(1), pages 275-295, April.
    8. Ruiz-Torres, Alex J. & Lopez, Francisco J. & Ho, Johnny C., 2007. "Scheduling uniform parallel machines subject to a secondary resource to minimize the number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 179(2), pages 302-315, June.
    9. M'Hallah, Rym & Bulfin, R. L., 2005. "Minimizing the weighted number of tardy jobs on parallel processors," European Journal of Operational Research, Elsevier, vol. 160(2), pages 471-484, January.
    10. Koksalan, Murat & Burak Keha, Ahmet, 2003. "Using genetic algorithms for single-machine bicriteria scheduling problems," European Journal of Operational Research, Elsevier, vol. 145(3), pages 543-556, March.
    11. Hejl, Lukáš & Šůcha, Přemysl & Novák, Antonín & Hanzálek, Zdeněk, 2022. "Minimizing the weighted number of tardy jobs on a single machine: Strongly correlated instances," European Journal of Operational Research, Elsevier, vol. 298(2), pages 413-424.
    12. Jaehn, Florian, 2024. "Scheduling with jobs at fixed positions," European Journal of Operational Research, Elsevier, vol. 318(2), pages 388-397.
    13. Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2013. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries for multiple customers in supply chains," European Journal of Operational Research, Elsevier, vol. 228(2), pages 345-357.
    14. Ruiz-Torres, Alex J. & Ho, Johnny C. & Lopez, Francisco J., 2006. "Generating Pareto schedules with outsource and internal parallel resources," International Journal of Production Economics, Elsevier, vol. 103(2), pages 810-825, October.
    15. Nadia Brauner & Gerd Finke & Yakov Shafransky, 2017. "Lawler’s minmax cost problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 31-46, July.
    16. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    17. Jolai, Fariborz, 2005. "Minimizing number of tardy jobs on a batch processing machine with incompatible job families," European Journal of Operational Research, Elsevier, vol. 162(1), pages 184-190, April.
    18. Janiak, Adam & Kovalyov, Mikhail Y., 1996. "Single machine scheduling subject to deadlines and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 94(2), pages 284-291, October.
    19. Briskorn, Dirk & Waldherr, Stefan, 2022. "Anarchy in the UJ: Coordination mechanisms for minimizing the number of late jobs," European Journal of Operational Research, Elsevier, vol. 301(3), pages 815-827.
    20. Yedidsion, Liron & Shabtay, Dvir & Korach, Ephraim & Kaspi, Moshe, 2009. "A bicriteria approach to minimize number of tardy jobs and resource consumption in scheduling a single machine," International Journal of Production Economics, Elsevier, vol. 119(2), pages 298-307, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:116:y:1999:i:1:p:183-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.