IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v21y2016icp10-14.html
   My bibliography  Save this article

On determining priors for the generation of efficient stated choice experimental designs

Author

Listed:
  • Bliemer, Michiel C.J.
  • Collins, Andrew T.

Abstract

Bayesian priors are required in order to generate efficient and robust experimental designs for stated choice surveys. Although such priors are commonly obtained through a pilot study, in this paper we provide a simple alternative in which the analyst depends only on their own expert judgement and possibly on parameter estimates obtained from the literature. The process consists of ranking attribute levels, balancing choice tasks to obtain trade-offs, and setting probabilities in sample choice tasks to establish scale.

Suggested Citation

  • Bliemer, Michiel C.J. & Collins, Andrew T., 2016. "On determining priors for the generation of efficient stated choice experimental designs," Journal of choice modelling, Elsevier, vol. 21(C), pages 10-14.
  • Handle: RePEc:eee:eejocm:v:21:y:2016:i:c:p:10-14
    DOI: 10.1016/j.jocm.2016.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534515300877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2016.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bliemer, Michiel C.J. & Rose, John M., 2013. "Confidence intervals of willingness-to-pay for random coefficient logit models," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 199-214.
    2. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
    3. John Rose & Michiel Bliemer, 2013. "Sample size requirements for stated choice experiments," Transportation, Springer, vol. 40(5), pages 1021-1041, September.
    4. Jordan J. Louviere & Towhidul Islam & Nada Wasi & Deborah Street & Leonie Burgess, 2008. "Designing Discrete Choice Experiments: Do Optimal Designs Come at a Price?," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 35(2), pages 360-375, March.
    5. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Yao & Riccardo Scarpa & John Rose & James Turner, 2015. "Experimental Design Criteria and Their Behavioural Efficiency: An Evaluation in the Field," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 433-455, November.
    2. Joan L. Walker & Yanqiao Wang & Mikkel Thorhauge & Moshe Ben-Akiva, 2018. "D-efficient or deficient? A robustness analysis of stated choice experimental designs," Theory and Decision, Springer, vol. 84(2), pages 215-238, March.
    3. van Cranenburgh, Sander & Rose, John M. & Chorus, Caspar G., 2018. "On the robustness of efficient experimental designs towards the underlying decision rule," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 50-64.
    4. van Cranenburgh, Sander & Collins, Andrew T., 2019. "New software tools for creating stated choice experimental designs efficient for regret minimisation and utility maximisation decision rules," Journal of choice modelling, Elsevier, vol. 31(C), pages 104-123.
    5. Kessels, Roselinde, 2016. "Homogeneous versus heterogeneous designs for stated choice experiments: Ain't homogeneous designs all bad?," Journal of choice modelling, Elsevier, vol. 21(C), pages 2-9.
    6. John M. Rose & Michiel C.J. Bliemer, 2014. "Stated choice experimental design theory: the who, the what and the why," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 7, pages 152-177, Edward Elgar Publishing.
    7. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    8. Canessa, Carolin & Venus, Terese E. & Wiesmeier, Miriam & Mennig, Philipp & Sauer, Johannes, 2023. "Incentives, Rewards or Both in Payments for Ecosystem Services: Drawing a Link Between Farmers' Preferences and Biodiversity Levels," Ecological Economics, Elsevier, vol. 213(C).
    9. Chèze, Benoît & David, Maia & Martinet, Vincent, 2020. "Understanding farmers' reluctance to reduce pesticide use: A choice experiment," Ecological Economics, Elsevier, vol. 167(C).
    10. Marcucci, Edoardo & Gatta, Valerio & Le Pira, Michela, 2018. "Gamification design to foster stakeholder engagement and behavior change: An application to urban freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 119-132.
    11. Elizabeth Kinter & Thomas Prior & Christopher Carswell & John Bridges, 2012. "A Comparison of Two Experimental Design Approaches in Applying Conjoint Analysis in Patient-Centered Outcomes Research," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 5(4), pages 279-294, December.
    12. Kwabena Krah & Daniel R Petrolia & Angelica Williams & Keith H Coble & Ardian Harri & Roderick M Rejesus, 2018. "Producer Preferences for Contracts on a Risky Bioenergy Crop," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 40(2), pages 240-258.
    13. Regier, Dean A. & Watson, Verity & Burnett, Heather & Ungar, Wendy J., 2014. "Task complexity and response certainty in discrete choice experiments: An application to drug treatments for juvenile idiopathic arthritis," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 50(C), pages 40-49.
    14. Palhazi Cuervo, Daniel & Kessels, Roselinde & Goos, Peter & Sörensen, Kenneth, 2016. "An integrated algorithm for the optimal design of stated choice experiments with partial profiles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 648-669.
    15. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    16. Alba J. Collart & Matthew G. Interis, 2018. "Consumer Imperfect Information in the Market for Expired and Nearly Expired Foods and Implications for Reducing Food Waste," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    17. Samare P. I. Huls & Emily Lancsar & Bas Donkers & Jemimah Ride, 2022. "Two for the price of one: If moving beyond traditional single‐best discrete choice experiments, should we use best‐worst, best‐best or ranking for preference elicitation?," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2630-2647, December.
    18. Esther W. de Bekker‐Grob & Mandy Ryan & Karen Gerard, 2012. "Discrete choice experiments in health economics: a review of the literature," Health Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 145-172, February.
    19. Bliemer, Michiel C.J. & Rose, John M. & Chorus, Caspar G., 2017. "Detecting dominance in stated choice data and accounting for dominance-based scale differences in logit models," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 83-104.
    20. Haghani, Milad & Sarvi, Majid, 2018. "Hypothetical bias and decision-rule effect in modelling discrete directional choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 361-388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:21:y:2016:i:c:p:10-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.