IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v13y2014icp24-36.html
   My bibliography  Save this article

Latent variables as a proxy for inherent preferences: A test of antecedent volition

Author

Listed:
  • Magor, Thomas J.
  • Coote, Leonard V.

Abstract

We present a test of antecedent volition under conditions of varying choice complexity. Using a stated preference design, decision makers make hypothetical transport choices under three decision scenarios. The choices are made under conditions of three, five, and seven alternatives per choice set. Further, we analyze the data from these three experiments simultaneously using factor-analytic structural choice models. We fit these models because they allow us to specify a latent structure representing a behavioral process of antecedent volition. Past research emphasizes differences in aggregate preferences due to context effects, but is incomplete in some important respects. Model parameters of the most theoretically appealing specification include estimates of means (i.e., aggregate preferences for the attributes studied) and regression coefficients for the effects of latent variables on the taste sensitivities common to the decision scenarios (i.e., structure of preferences in relation to the attributes). Extending past research, we find evidence of latent variables and structures that are common to the taste sensitivities of specific attributes across the decision scenarios (i.e., sources of preference heterogeneity and a structure to the heterogeneity). This pattern of results is suggestive of a behavioral process consistent with literature and theory on antecedent volition. Our model forms and results have implications for policymakers and researchers. They are especially salient to recent literature contrasting context effects with the notion of stable and inherent preferences.

Suggested Citation

  • Magor, Thomas J. & Coote, Leonard V., 2014. "Latent variables as a proxy for inherent preferences: A test of antecedent volition," Journal of choice modelling, Elsevier, vol. 13(C), pages 24-36.
  • Handle: RePEc:eee:eejocm:v:13:y:2014:i:c:p:24-36
    DOI: 10.1016/j.jocm.2015.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534515000032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2015.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephane Hess & Nesha Beharry-Borg, 2012. "Accounting for Latent Attitudes in Willingness-to-Pay Studies: The Case of Coastal Water Quality Improvements in Tobago," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(1), pages 109-131, May.
    2. Lee, Angela Y. & Aaker, Jennifer L. & Gardner, Wendi L., 2000. "The Pleasures and Pains of Distinct Self-Construals: The Role of Interdependence in Regulatory Focus," Research Papers 1577r, Stanford University, Graduate School of Business.
    3. Stephane Hess & Amanda Stathopoulos & Danny Campbell & Vikki O’Neill & Sebastian Caussade, 2013. "It’s not that I don’t care, I just don’t care very much: confounding between attribute non-attendance and taste heterogeneity," Transportation, Springer, vol. 40(3), pages 583-607, May.
    4. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    5. Swait, Joffre & Adamowicz, Wiktor, 2001. "The Influence of Task Complexity on Consumer Choice: A Latent Class Model of Decision Strategy Switching," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(1), pages 135-148, June.
    6. Swait, Joffre, 2001. "Choice set generation within the generalized extreme value family of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 643-666, August.
    7. David Hensher & April Reyes, 2000. "Trip chaining as a barrier to the propensity to use public transport," Transportation, Springer, vol. 27(4), pages 341-361, December.
    8. Keane, Michael P, 1997. "Modeling Heterogeneity and State Dependence in Consumer Choice Behavior," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 310-327, July.
    9. Caussade, Sebastián & Ortúzar, Juan de Dios & Rizzi, Luis I. & Hensher, David A., 2005. "Assessing the influence of design dimensions on stated choice experiment estimates," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 621-640, August.
    10. Hensher, David A. & Rose, John M., 2007. "Development of commuter and non-commuter mode choice models for the assessment of new public transport infrastructure projects: A case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 428-443, June.
    11. Elrod, Terry & Keane, Michael, 1995. "A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data," MPRA Paper 52434, University Library of Munich, Germany.
    12. Hess, Stephane & Hensher, David A., 2010. "Using conditioning on observed choices to retrieve individual-specific attribute processing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 781-790, July.
    13. Rungie, Cam M. & Coote, Leonard V. & Louviere, Jordan J., 2012. "Latent variables in discrete choice experiments," Journal of choice modelling, Elsevier, vol. 5(3), pages 145-156.
    14. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    15. Amos Tversky & Itamar Simonson, 1993. "Context-Dependent Preferences," Management Science, INFORMS, vol. 39(10), pages 1179-1189, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johanna Lena Dahlhausen & Cam Rungie & Jutta Roosen, 2018. "Value of labeling credence attributes—common structures and individual preferences," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 741-751, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balbontin, Camila & Hensher, David A. & Collins, Andrew T., 2019. "How to better represent preferences in choice models: The contributions to preference heterogeneity attributable to the presence of process heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 218-248.
    2. David A. Hensher, 2006. "How do respondents process stated choice experiments? Attribute consideration under varying information load," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 861-878, September.
    3. Rungie, Cam & Scarpa, Riccardo & Thiene, Mara, 2014. "The influence of individuals in forming collective household preferences for water quality," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 161-174.
    4. Stephane Hess & Andrew Daly & Richard Batley, 2018. "Revisiting consistency with random utility maximisation: theory and implications for practical work," Theory and Decision, Springer, vol. 84(2), pages 181-204, March.
    5. Johanna Lena Dahlhausen & Cam Rungie & Jutta Roosen, 2018. "Value of labeling credence attributes—common structures and individual preferences," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 741-751, November.
    6. Michael P. Keane & Nada Wasi, 2013. "The Structure of Consumer Taste Heterogeneity in Revealed vs. Stated Preference Data," Economics Papers 2013-W10, Economics Group, Nuffield College, University of Oxford.
    7. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    8. Mara Thiene & Riccardo Scarpa & Jordan Louviere, 2015. "Addressing Preference Heterogeneity, Multiple Scales and Attribute Attendance with a Correlated Finite Mixing Model of Tap Water Choice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 637-656, November.
    9. Yegoryan, Narine & Guhl, Daniel & Klapper, Daniel, 2018. "Inferring Attribute Non-Attendance Using Eye Tracking in Choice-Based Conjoint Analysis," Rationality and Competition Discussion Paper Series 111, CRC TRR 190 Rationality and Competition.
    10. Kosenius, Anna-Kaisa, 2013. "Preference discontinuity in choice experiment: Determinants and implications," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 45(C), pages 138-145.
    11. Hu, Wuyang & Adamowicz, Wiktor L. & Veeman, Michele M., 2005. "Bayesian Analysis of Consumer Choices with Taste, Context, Reference Point and Individual Scale Effects," 2005 Annual meeting, July 24-27, Providence, RI 19296, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Colombo, Sergio & Christie, Michael & Hanley, Nick, 2013. "What are the consequences of ignoring attributes in choice experiments? Implications for ecosystem service valuation," Ecological Economics, Elsevier, vol. 96(C), pages 25-35.
    13. Keane, Michael P. & Wasi, Nada, 2016. "How to model consumer heterogeneity? Lessons from three case studies on SP and RP data," Research in Economics, Elsevier, vol. 70(2), pages 197-231.
    14. Sebastian Heidenreich & Verity Watson & Mandy Ryan & Euan Phimister, 2018. "Decision heuristic or preference? Attribute non‐attendance in discrete choice problems," Health Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 157-171, January.
    15. Rungie, Cam M. & Coote, Leonard V. & Louviere, Jordan J., 2012. "Latent variables in discrete choice experiments," Journal of choice modelling, Elsevier, vol. 5(3), pages 145-156.
    16. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    17. Saelensminde, Kjartan, 2006. "Causes and consequences of lexicographic choices in stated choice studies," Ecological Economics, Elsevier, vol. 59(3), pages 331-340, September.
    18. Weng, Weizhe & Morrison, Mark & Boyle, Kevin J. & Boxall, Peter C., 2017. "The effect of the number of alternatives in choice experiment questions," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259179, Agricultural and Applied Economics Association.
    19. Glenk, Klaus & Meyerhoff, Jürgen & Colombo, Sergio & Faccioli, Michela, 2024. "Enhancing the face validity of choice experiments: A simple diagnostic check," Ecological Economics, Elsevier, vol. 221(C).
    20. Pradeep Chintagunta & Jean-Pierre Dubé & Khim Yong Goh, 2005. "Beyond the Endogeneity Bias: The Effect of Unmeasured Brand Characteristics on Household-Level Brand Choice Models," Management Science, INFORMS, vol. 51(5), pages 832-849, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:13:y:2014:i:c:p:24-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.