IDEAS home Printed from https://ideas.repec.org/a/eee/ecosys/v39y2015i3p369-389.html
   My bibliography  Save this article

Position limit for the CSI 300 stock index futures market

Author

Listed:
  • Wei, Lijian
  • Zhang, Wei
  • Xiong, Xiong
  • Shi, Lei

Abstract

The aim of this study was to find the optimal position limit for the Chinese stock index (CSI) 300 futures market. A low position limit helps to prevent price manipulations in the spot market, and thus keeps the magnitude of instantaneous price changes within the tolerance range of policymakers. However, setting a position limit that is too low may also have negative effects on market quality. We propose an artificial limit order market with heterogeneous interacting agents to examine the impact of different levels of position limits on market quality, measured as liquidity, return volatility, efficiency of information dissemination, and trading welfare. The simulation model is based on realistic trading mechanisms, investor structure, and order submission behavior observed in the CSI 300 futures market.

Suggested Citation

  • Wei, Lijian & Zhang, Wei & Xiong, Xiong & Shi, Lei, 2015. "Position limit for the CSI 300 stock index futures market," Economic Systems, Elsevier, vol. 39(3), pages 369-389.
  • Handle: RePEc:eee:ecosys:v:39:y:2015:i:3:p:369-389
    DOI: 10.1016/j.ecosys.2015.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0939362515000369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecosys.2015.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    2. Menkhoff, Lukas & Osler, Carol L. & Schmeling, Maik, 2010. "Limit-order submission strategies under asymmetric information," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2665-2677, November.
    3. Gil Bazo, Javier & Moreno Muñoz, Jesús David, 2005. "Price dynamics, informational efficiency and wealth distribution in continuous double auction markets," DEE - Working Papers. Business Economics. WB wb057819, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    4. Kumar, Praveen & Seppi, Duane J, 1992. "Futures Manipulation with "Cash Settlement."," Journal of Finance, American Finance Association, vol. 47(4), pages 1485-1502, September.
    5. Dongmin Kong & Maobin Wang, 2014. "The Manipulator's Poker: Order-Based Manipulation in the Chinese Stock Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(2), pages 73-98, March.
    6. Hans R. Dutt & Lawrence E. Harris, 2005. "Position limits for cash‐settled derivative contracts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(10), pages 945-965, October.
    7. Theissen, Erik, 2000. "Market structure, informational efficiency and liquidity: An experimental comparison of auction and dealer markets," Journal of Financial Markets, Elsevier, vol. 3(4), pages 333-363, November.
    8. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    9. Goettler, Ronald L. & Parlour, Christine A. & Rajan, Uday, 2009. "Informed traders and limit order markets," Journal of Financial Economics, Elsevier, vol. 93(1), pages 67-87, July.
    10. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    11. Xiong Xiong & Mei Wen & Wei Zhang & Yong Jie Zhang, 2011. "Cross-Market Financial Risk Analysis: An Agent-Based Computational Finance," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 563-584.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaole Wan & Zhen Zhang & Chi Zhang & Qingchun Meng, 2020. "Stock Market Temporal Complex Networks Construction, Robustness Analysis, and Systematic Risk Identification: A Case of CSI 300 Index," Complexity, Hindawi, vol. 2020, pages 1-19, July.
    2. Jing Hao & Xiong Xiong & Feng He & Feng Ma, 2019. "Price Discovery in the Chinese Stock Index Futures Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(13), pages 2982-2996, October.
    3. Zhang, Xiaotao & Zhao, Yuepeng & Wang, Ziqiao, 2024. "Do loosened trading rules restore the stock index futures price discovery ability in China?," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 389-397.
    4. Zhang, Wei & Zhou, Zhong-Qiang & Xiong, Xiong, 2019. "Behavioral heterogeneity and excess stock price volatility in China," Finance Research Letters, Elsevier, vol. 28(C), pages 348-354.
    5. Edward Curran & Jack Hunt & Vito Mollica, 2020. "Trading protocols and price discovery: Implicit transaction costs in Indian single stock futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(11), pages 1793-1806, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lijian Wei & Wei Zhang & Xiong Xiong & Lei Shi, 2014. "Position-Limit Design for the CSI 300 Futures Markets," Research Paper Series 349, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Lijian Wei & Xiong Xiong & Wei Zhang & Xue-Zhong He & Yongjie Zhang, 2017. "The effect of genetic algorithm learning with a classifier system in limit order markets," Published Paper Series 2017-3, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    3. Lijian Wei & Wei Zhang & Xue-Zhong He & Yongjie Zhang, 2013. "Learning and Information Dissemination in Limit Order Markets," Research Paper Series 333, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Chiarella, Carl & He, Xue-Zhong & Wei, Lijian, 2015. "Learning, information processing and order submission in limit order markets," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 245-268.
    5. Lijian Wei & Wei Zhang & Xiong Xiong & Yu Zhao, 2014. "A Multi‐agent System for Policy Design of Tick Size in Stock Index Futures Markets," Systems Research and Behavioral Science, Wiley Blackwell, vol. 31(4), pages 512-526, July.
    6. He, Xue-Zhong & Lin, Shen, 2022. "Reinforcement Learning Equilibrium in Limit Order Markets," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    7. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    8. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    9. Marvin Wee & Joey W. Yang, 2016. "The Evolution of Informed Liquidity Provision: Evidence from an Order†driven Market," European Financial Management, European Financial Management Association, vol. 22(5), pages 882-915, November.
    10. Carl Chiarella & Xue-Zhong He & Lijian Wei, 2013. "Learning and Evolution of Trading Strategies in Limit Order Markets," Research Paper Series 335, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    12. Arifovic, Jasmina & He, Xue-zhong & Wei, Lijian, 2022. "Machine learning and speed in high-frequency trading," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    13. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 991-1020, April.
    14. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    15. Paolo Mazza & Mikael Petitjean, 2019. "Testing the effect of technical analysis on market quality and order book dynamics," Applied Economics, Taylor & Francis Journals, vol. 51(18), pages 1947-1976, April.
    16. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    17. Ya-Chi Huang & Chueh-Yung Tsao, 2018. "Discovering Traders’ Heterogeneous Behavior in High-Frequency Financial Data," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 821-846, April.
    18. Murphy Jun Jie Lee, 2013. "The Microstructure of Trading Processes on the Singapore Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4, July-Dece.
    19. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    20. Lo, Ingrid & Sapp, Stephen G., 2010. "Order aggressiveness and quantity: How are they determined in a limit order market?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(3), pages 213-237, July.

    More about this item

    Keywords

    Position limit; Stock index futures; Agent-based modeling; Market quality;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosys:v:39:y:2015:i:3:p:369-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://edirc.repec.org/data/osteide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.