IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v5y2018icp171-188.html
   My bibliography  Save this article

Model comparison for generalized linear models with dependent observations

Author

Listed:
  • Eguchi, Shoichi

Abstract

The stochastic expansion of the marginal quasi-likelihood function associated with a class of generalized linear models is shown. Based on the expansion, a quasi-Bayesian information criterion is proposed that is able to deal with misspecified models and dependent data, resulting in a theoretical extension of the classical Schwarz’s Bayesian information criterion. It is also proved that the proposed criterion has model selection consistency with respect to the optimal model. Some illustrative numerical examples and a real data example are presented.

Suggested Citation

  • Eguchi, Shoichi, 2018. "Model comparison for generalized linear models with dependent observations," Econometrics and Statistics, Elsevier, vol. 5(C), pages 171-188.
  • Handle: RePEc:eee:ecosta:v:5:y:2018:i:c:p:171-188
    DOI: 10.1016/j.ecosta.2017.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306217300357
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2017.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    2. Jinchi Lv & Jun S. Liu, 2014. "Model selection principles in misspecified models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 141-167, January.
    3. Domowitz, Ian & White, Halbert, 1982. "Misspecified models with dependent observations," Journal of Econometrics, Elsevier, vol. 20(1), pages 35-58, October.
    4. McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
    5. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    6. Antonio, Katrien & Beirlant, Jan, 2007. "Actuarial statistics with generalized linear mixed models," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 58-76, January.
    7. Masayuki Uchida, 2010. "Contrast-based information criterion for ergodic diffusion processes from discrete observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 161-187, February.
    8. Eckhard Liebscher, 2005. "Towards a Unified Approach for Proving Geometric Ergodicity and Mixing Properties of Nonlinear Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 669-689, September.
    9. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emre Demirkaya & Yang Feng & Pallavi Basu & Jinchi Lv, 2022. "Large-scale model selection in misspecified generalized linear models [Information theory and an extension of the maximum likelihood principle]," Biometrika, Biometrika Trust, vol. 109(1), pages 123-136.
    2. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    3. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    4. Francisco Blasques & Christian Francq & Sébastien Laurent, 2020. "A New Class of Robust Observation-Driven Models," Tinbergen Institute Discussion Papers 20-073/III, Tinbergen Institute.
    5. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    6. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    7. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
    8. Jeffrey M. Woodridge, 1988. "A Unified Approach to Robust, Regression-Based Specification Tests," Working papers 480, Massachusetts Institute of Technology (MIT), Department of Economics.
    9. Fabio Canova & Christian Matthes, 2021. "A Composite Likelihood Approach for Dynamic Structural Models," The Economic Journal, Royal Economic Society, vol. 131(638), pages 2447-2477.
    10. Domowitz, Ian & Hakkio, Craig S., 1985. "Conditional variance and the risk premium in the foreign exchange market," Journal of International Economics, Elsevier, vol. 19(1-2), pages 47-66, August.
    11. Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
    12. Calzolari, Giorgio, 1992. "Stima delle equazioni simultanee non-lineari: una rassegna [Estimation of nonlinear simultaneous equations: a survey]," MPRA Paper 24123, University Library of Munich, Germany, revised 1992.
    13. repec:bny:wpaper:0068 is not listed on IDEAS
    14. Mizon, Grayham E & Richard, Jean-Francois, 1986. "The Encompassing Principle and Its Application to Testing Non-nested Hypotheses," Econometrica, Econometric Society, vol. 54(3), pages 657-678, May.
    15. Hamed Haselimashhadi & Veronica Vinciotti, 2018. "Penalised inference for lagged dependent regression in the presence of autocorrelated residuals," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 49-68, April.
    16. Hidetoshi Shimodaira & Haruyoshi Maeda, 2018. "An information criterion for model selection with missing data via complete-data divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 421-438, April.
    17. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(1), pages 17-43, March.
    18. Po-Hsien Huang, 2017. "Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 407-426, June.
    19. Choi, Hwan-sik, 2016. "Information theory for maximum likelihood estimation of diffusion models," Journal of Econometrics, Elsevier, vol. 191(1), pages 110-128.
    20. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    21. Roy Levy & Gregory R. Hancock, 2011. "An Extended Model Comparison Framework for Covariance and Mean Structure Models, Accommodating Multiple Groups and Latent Mixtures," Sociological Methods & Research, , vol. 40(2), pages 256-278, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:5:y:2018:i:c:p:171-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.