IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v25y2023icp51-65.html
   My bibliography  Save this article

Combining rules for F- and Beta-statistics from multiply-imputed data

Author

Listed:
  • Chaurasia, Ashok

Abstract

Missing values in data impede the task of inference for population parameters of interest. Multiple Imputation (MI) is a popular method for handling missing data since it accounts for the uncertainty of missing values. Inference in MI involves combining point and variance estimates from each imputed dataset via Rubin’s rules. A sufficient condition for these rules is that the estimator is approximately (multivariate) normally distributed. However, these traditional combining rules get computationally cumbersome for multicomponent parameters of interest, and unreliable at high rates of missingness (due to an unstable variance matrix). New combining rules for univariate F- and Beta-statistics from multiply-imputed data are proposed for decisions about multicomponent parameters. The proposed combining rules have the advantage of being computationally convenient since they only involve univariate F- and Beta-statistics, while providing the same inferential reliability as the traditional multivariate combining rules. Simulation study is conducted to demonstrate that the proposed method has good statistical properties of maintaining low type I and type II error rates at relatively large proportions of missingness. The general applicability of the proposed method is demonstrated within a lead exposure study to assess the association between lead exposure and neurological motor function.

Suggested Citation

  • Chaurasia, Ashok, 2023. "Combining rules for F- and Beta-statistics from multiply-imputed data," Econometrics and Statistics, Elsevier, vol. 25(C), pages 51-65.
  • Handle: RePEc:eee:ecosta:v:25:y:2023:i:c:p:51-65
    DOI: 10.1016/j.ecosta.2021.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306221001076
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2021.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jerome P. Reiter, 2007. "Small-sample degrees of freedom for multi-component significance tests with multiple imputation for missing data," Biometrika, Biometrika Trust, vol. 94(2), pages 502-508.
    2. Horton N. J. & Lipsitz S. R., 2001. "Multiple Imputation in Practice: Comparison of Software Packages for Regression Models With Missing Variables," The American Statistician, American Statistical Association, vol. 55, pages 244-254, August.
    3. Paul T. von Hippel, 2020. "How Many Imputations Do You Need? A Two-stage Calculation Using a Quadratic Rule," Sociological Methods & Research, , vol. 49(3), pages 699-718, August.
    4. Ofer Harel, 2009. "The estimation of R2 and adjusted R2 in incomplete data sets using multiple imputation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1109-1118.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Consentino, Fabrizio & Claeskens, Gerda, 2010. "Order selection tests with multiply imputed data," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2284-2295, October.
    2. repec:jss:jstsof:45:i03 is not listed on IDEAS
    3. Coustaury, Camille & Jeannot, Elias & Moreau, Adele & Nietge, Clotilde & Maharani, Asri & Richards, Lindsay & Präg, Patrick, 2023. "Subjective socioeconomic status and self-rated health in the English Longitudinal Study of Aging: A fixed-effects analysis☆☆We thank the anonymous reviewers of Social Science & Medicine for their help," Social Science & Medicine, Elsevier, vol. 336(C).
    4. Joost R. Ginkel, 2020. "Standardized Regression Coefficients and Newly Proposed Estimators for $${R}^{{2}}$$R2 in Multiply Imputed Data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 185-205, March.
    5. Shane S. Dikolli & John C. Heater & William J. Mayew & Mani Sethuraman, 2021. "Chief Financial Officer Co-option and Chief Executive Officer Compensation," Management Science, INFORMS, vol. 67(3), pages 1939-1955, March.
    6. Susanne Rässler & Regina T. Riphahn, 2006. "Survey Item Nonresponse and its Treatment," Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 15, pages 215-230, Springer.
    7. Zhang, Zhiqin & Zhang, Liangliang & Liu, Dong & Sun, Nan & Li, Mo & Faiz, Muhammad Abrar & Li, Tianxiao & Cui, Song & Khan, Muhammad Imran, 2024. "Measurement and analysis of regional water-energy-food nexus resilience with an improved hybrid kernel extreme learning machine model based on a dung beetle optimization algorithm," Agricultural Systems, Elsevier, vol. 218(C).
    8. Yajuan Si & Jerome P. Reiter, 2013. "Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 499-521, October.
    9. Franziska Meyer & Oliver Winkler, 2023. "Place of Residence Does Matter for Educational Integration: The Relevance of Spatial Contexts for Refugees’ Transition to VET in Germany," Social Sciences, MDPI, vol. 12(3), pages 1-30, February.
    10. Janet MacNeil Vroomen & Iris Eekhout & Marcel G. Dijkgraaf & Hein van Hout & Sophia E. de Rooij & Martijn W. Heymans & Judith E. Bosmans, 2016. "Multiple imputation strategies for zero-inflated cost data in economic evaluations: which method works best?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(8), pages 939-950, November.
    11. Aderiana Mutheu Mbandi & Jan R. Böhnke & Dietrich Schwela & Harry Vallack & Mike R. Ashmore & Lisa Emberson, 2019. "Estimating On-Road Vehicle Fuel Economy in Africa: A Case Study Based on an Urban Transport Survey in Nairobi, Kenya," Energies, MDPI, vol. 12(6), pages 1-28, March.
    12. Dagmar Brožová & Jan Zouhar, 2022. "The effect of court-mandated mediation on the length of court proceedings in the Czech Republic," European Journal of Law and Economics, Springer, vol. 53(3), pages 485-508, June.
    13. Calzolari, Giorgio & Neri, Laura, 2002. "Imputation of continuous variables missing at random using the method of simulated scores," MPRA Paper 22986, University Library of Munich, Germany, revised 2002.
    14. Hildegard Seidl & Matthias Hunger & Reiner Leidl & Christa Meisinger & Rupert Wende & Bernhard Kuch & Rolf Holle, 2015. "Cost-effectiveness of nurse-based case management versus usual care for elderly patients with myocardial infarction: results from the KORINNA study," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(6), pages 671-681, July.
    15. Christian Seiler, 2013. "Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 52, May.
    16. Youngwon Nam & Cäzilia Loibl, 2021. "Financial Capability and Financial Planning at the Verge of Retirement Age," Journal of Family and Economic Issues, Springer, vol. 42(1), pages 133-150, March.
    17. Ahmad R. Alsaber & Jiazhu Pan & Adeeba Al-Hurban, 2021. "Handling Complex Missing Data Using Random Forest Approach for an Air Quality Monitoring Dataset: A Case Study of Kuwait Environmental Data (2012 to 2018)," IJERPH, MDPI, vol. 18(3), pages 1-25, February.
    18. O'Donnell, James & Cárdenas, Diana & Orazani, Nima & Evans, Ann & Reynolds, Katherine J., 2022. "The longitudinal effect of COVID-19 infections and lockdown on mental health and the protective effect of neighbourhood social relations," Social Science & Medicine, Elsevier, vol. 297(C).
    19. Kristian Kleinke & Mark Stemmler & Jost Reinecke & Friedrich Lösel, 2011. "Efficient ways to impute incomplete panel data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 351-373, December.
    20. Geronimi, J. & Saporta, G., 2017. "Variable selection for multiply-imputed data with penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 103-114.
    21. Muhammad Salar Khan, 2021. "Estimating a new panel MSK dataset for comparative analyses of national absorptive capacity systems, economic growth, and development in low and middle income economies," Papers 2109.05529, arXiv.org.

    More about this item

    Keywords

    combining F- and Beta-statistics; combining R2; F-tests; missing data; multiple imputation; linear models;
    All these keywords.

    JEL classification:

    • R2 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:25:y:2023:i:c:p:51-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.