IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v94y2007i3p673-689.html
   My bibliography  Save this article

Optimal adaptive randomized designs for clinical trials

Author

Listed:
  • Yi Cheng
  • Donald A. Berry

Abstract

Optimal decision-analytic designs are deterministic. Such designs are appropriately criticized in the context of clinical trials because they are subject to assignment bias. On the other hand, balanced randomized designs may assign an excessive number of patients to a treatment arm that is performing relatively poorly. We propose a compromise between these two extremes, one that achieves some of the good characteristics of both. We introduce a constrained optimal adaptive design for a fully sequential randomized clinical trial with k arms and n patients. An r-design is one for which, at each allocation, each arm has probability at least r of being chosen, 0 ⩽ r ⩽ 1/k. An optimal design among all r-designs is called r-optimal. An r 1 -design is also an r 2 -design if r 1 ⩾ r 2 . A design without constraint is the special case r = 0 and a balanced randomized design is the special case r = 1/k. The optimization criterion is to maximize the expected overall utility in a Bayesian decision-analytic approach, where utility is the sum over the utilities for individual patients over a 'patient horizon' N. We prove analytically that there exists an r-optimal design such that each patient is assigned to a particular one of the arms with probability 1 − (k − 1)r, and to the remaining arms with probability r. We also show that the balanced design is asymptotically r-optimal for any given r, 0 ⩽ r < 1/k, as N/n → ∞. This implies that every r-optimal design is asymptotically optimal without constraint. Numerical computations using backward induction for k = 2 arms show that, in general, this asymptotic optimality feature for r-optimal designs can be accomplished with moderate trial size n if the patient horizon N is large relative to n. We also show that, in a trial with an r-optimal design, r < 1/2, fewer patients are assigned to an inferior arm than when following a balanced design, even for r-optimal designs having the same statistical power as a balanced design. We discuss extensions to various clinical trial settings. Copyright 2007, Oxford University Press.

Suggested Citation

  • Yi Cheng & Donald A. Berry, 2007. "Optimal adaptive randomized designs for clinical trials," Biometrika, Biometrika Trust, vol. 94(3), pages 673-689.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:3:p:673-689
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm049
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guosheng Yin & Nan Chen & J. Jack Lee, 2018. "Bayesian Adaptive Randomization and Trial Monitoring with Predictive Probability for Time-to-Event Endpoint," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 420-438, August.
    2. Ahuja, Vishal & Birge, John R., 2016. "Response-adaptive designs for clinical trials: Simultaneous learning from multiple patients," European Journal of Operational Research, Elsevier, vol. 248(2), pages 619-633.
    3. Williamson, S. Faye & Jacko, Peter & Villar, Sofía S. & Jaki, Thomas, 2017. "A Bayesian adaptive design for clinical trials in rare diseases," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 136-153.
    4. Basu, Anirban, 2011. "Economics of individualization in comparative effectiveness research and a basis for a patient-centered health care," Journal of Health Economics, Elsevier, vol. 30(3), pages 549-559, May.
    5. Yanqing Yi & Yuan Yuan, 2013. "An optimal allocation for response-adaptive designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1996-2008, September.
    6. Tolusso, David & Wang, Xikui, 2011. "Interval estimation for response adaptive clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 725-730, January.
    7. Williamson, S. Faye & Jacko, Peter & Jaki, Thomas, 2022. "Generalisations of a Bayesian decision-theoretic randomisation procedure and the impact of delayed responses," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    8. Xu, Wenfu & Gao, Jingya & Hu, Feifang & Cheung, Siu Hung, 2018. "Response-adaptive treatment allocation for non-inferiority trials with heterogeneous variances," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 168-179.
    9. Yi, Yanqing & Wang, Xikui, 2023. "A Markov decision process for response adaptive designs," Econometrics and Statistics, Elsevier, vol. 25(C), pages 125-133.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:3:p:673-689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.