IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v17y2021icp95-106.html
   My bibliography  Save this article

Aggregation of Seasonal Long-Memory Processes

Author

Listed:
  • del Barrio Castro, Tomás
  • Rachinger, Heiko

Abstract

To understand the impact of temporal aggregation on the properties of a seasonal long-memory process, the effects of skip and cumulation sampling on both stationary and nonstationary processes with poles at several potential frequencies are analyzed. By allowing for several poles in the disaggregated process, their interaction in the aggregated series is investigated. Further, by defining the process according to the truncated Type II definition, the proposed approach encompasses both stationary and nonstationary processes without requiring prior knowledge of the case. The frequencies in the aggregated series to which the poles in the disaggregated series are mapped can be directly deduced. Specifically, unlike cumulation sampling, skip sampling can impact on non-seasonal memory properties. Moreover, with cumulation sampling, seasonal long-memory can vanish in some cases. Using simulations, the mapping of the frequencies implied by temporal aggregation is illustrated and the estimation of the memory at the different frequencies is analyzed.

Suggested Citation

  • del Barrio Castro, Tomás & Rachinger, Heiko, 2021. "Aggregation of Seasonal Long-Memory Processes," Econometrics and Statistics, Elsevier, vol. 17(C), pages 95-106.
  • Handle: RePEc:eee:ecosta:v:17:y:2021:i:c:p:95-106
    DOI: 10.1016/j.ecosta.2020.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306220300691
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2020.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tomás del Barrio Castro & Paulo M. M. Rodrigues & A. M. Robert Taylor, 2019. "Temporal Aggregation of Seasonally Near‐Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 872-886, November.
    2. Arteche, Josu, 2020. "Exact Local Whittle Estimation In Long Memory Time Series With Multiple Poles," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1064-1098, December.
    3. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    4. Javier Hidalgo & Philippe Soulier, 2004. "Estimation of the location and exponent of the spectral singularity of a long memory process," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 55-81, January.
    5. repec:hal:journl:peer-00815563 is not listed on IDEAS
    6. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    7. Chung, Ching-Fan, 1996. "Estimating a generalized long memory process," Journal of Econometrics, Elsevier, vol. 73(1), pages 237-259, July.
    8. Arteche, Josu & Orbe, Jesus, 2017. "A strategy for optimal bandwidth selection in Local Whittle estimation," Econometrics and Statistics, Elsevier, vol. 4(C), pages 3-17.
    9. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    10. Sun, Jingwei & Shi, Wendong, 2014. "Aggregation of the generalized fractional processes," Economics Letters, Elsevier, vol. 124(2), pages 258-262.
    11. Gregoir, Stéphane, 1999. "Multivariate Time Series With Various Hidden Unit Roots, Part I," Econometric Theory, Cambridge University Press, vol. 15(4), pages 435-468, August.
    12. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
    13. Henghsiu Tsai & K. S. Chan, 2005. "Temporal Aggregation of Stationary And Nonstationary Discrete‐Time Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 613-624, July.
    14. Gregoir, Stéphane, 2010. "Fully Modified Estimation Of Seasonally Cointegrated Processes," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1491-1528, October.
    15. Uwe Hassler, 2013. "Effect of temporal aggregation on multiple time series in the frequency domain," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 562-573, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. del Barrio Castro, Tomás & Osborn, Denise R., 2023. "Periodic Integration and Seasonal Unit Roots," MPRA Paper 117935, University Library of Munich, Germany, revised 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomás del Barrio Castro & Gianluca Cubadda & Denise R. Osborn, 2022. "On cointegration for processes integrated at different frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 412-435, May.
    2. del Barrio Castro, Tomás & Osborn, Denise R., 2023. "Periodic Integration and Seasonal Unit Roots," MPRA Paper 117935, University Library of Munich, Germany, revised 2023.
    3. Sun, Jingwei & Shi, Wendong, 2014. "Aggregation of the generalized fractional processes," Economics Letters, Elsevier, vol. 124(2), pages 258-262.
    4. Voges, Michelle & Sibbertsen, Philipp, 2021. "Cyclical fractional cointegration," Econometrics and Statistics, Elsevier, vol. 19(C), pages 114-129.
    5. Shi, Wendong & Sun, Jingwei, 2016. "Aggregation and long-memory: An analysis based on the discrete Fourier transform," Economic Modelling, Elsevier, vol. 53(C), pages 470-476.
    6. Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020. "Realized stochastic volatility models with generalized Gegenbauer long memory," Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
    7. del Barrio Castro, Tomás & Rodrigues, Paulo M.M. & Robert Taylor, A.M., 2018. "Semi-Parametric Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 34(2), pages 447-476, April.
    8. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    9. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2139-2158.
    10. repec:hal:journl:peer-00815563 is not listed on IDEAS
    11. Leschinski, Christian & Sibbertsen, Philipp, 2014. "Model Order Selection in Seasonal/Cyclical Long Memory Models," Hannover Economic Papers (HEP) dp-535, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    12. Gil-Alana, Luis A. & Trani, Tommaso, 2019. "The cyclical structure of the UK inflation rate: 1210–2016," Economics Letters, Elsevier, vol. 181(C), pages 182-185.
    13. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    14. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
    15. Alexander, Carol & Rauch, Johannes, 2021. "A general property for time aggregation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 536-548.
    16. J. Arteche & C. Velasco, 2005. "Trimming and Tapering Semi‐Parametric Estimates in Asymmetric Long Memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 581-611, July.
    17. Cleiton Guollo Taufemback, 2023. "Asymptotic Behavior of Temporal Aggregation in Mixed‐Frequency Datasets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(4), pages 894-909, August.
    18. Guglielmo Maria Caporale & Luis Gil-Alana, 2012. "Long Memory and Volatility Dynamics in the US Dollar Exchange Rate," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 105-136, March - J.
    19. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    20. Asai Manabu & Peiris Shelton & McAleer Michael & Allen David E., 2020. "Cointegrated Dynamics for a Generalized Long Memory Process: Application to Interest Rates," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-18, January.
    21. McElroy, Tucker S. & Holan, Scott H., 2016. "Computation of the autocovariances for time series with multiple long-range persistencies," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 44-56.

    More about this item

    Keywords

    Aggregation; Cumulation sampling; Skip sampling; Seasonal long memory;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:17:y:2021:i:c:p:95-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.