IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v36y2020i6p1064-1098_3.html
   My bibliography  Save this article

Exact Local Whittle Estimation In Long Memory Time Series With Multiple Poles

Author

Listed:
  • Arteche, Josu

Abstract

A generalization of the Exact Local Whittle estimator in Shimotsu and Phillips (2005, Annals of Statistics 33, 1890–1933) is proposed for jointly estimating all the memory parameters in general long memory time series that possibly display standard, seasonal, and/or other cyclical strong persistence. Consistency and asymptotic normality are proven for stationary, nonstationary, and noninvertible series, permitting straightforward standard inference of interesting hypotheses such as the existence of unit roots and equality of memory parameters at some or all seasonal frequencies, which can be used as a prior test for the application of seasonal differencing filters. The effects of unknown deterministic terms are also discussed. Finally, the finite sample performance is analyzed in an extensive Monte Carlo exercise and an application to an U.S. Industrial Production index.

Suggested Citation

  • Arteche, Josu, 2020. "Exact Local Whittle Estimation In Long Memory Time Series With Multiple Poles," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1064-1098, December.
  • Handle: RePEc:cup:etheor:v:36:y:2020:i:6:p:1064-1098_3
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466619000422/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul M. Beaumont & Aaron D. Smallwood, 2024. "Conditional sum of squares estimation of k-factor GARMA models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 501-543, September.
    2. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    3. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    4. Voges, Michelle & Sibbertsen, Philipp, 2021. "Cyclical fractional cointegration," Econometrics and Statistics, Elsevier, vol. 19(C), pages 114-129.
    5. del Barrio Castro, Tomás & Rachinger, Heiko, 2021. "Aggregation of Seasonal Long-Memory Processes," Econometrics and Statistics, Elsevier, vol. 17(C), pages 95-106.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:36:y:2020:i:6:p:1064-1098_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.